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Main Topological Questions

For the purposes of this talk, all spaces will be —
subspaces of R" for some n.

Two Main Questions in Topology:

@ Characterizing or Classifying Certain Spaces,
Classes of Spaces, or Maps

@ Determining when Embeddings of One Space in
Another are Equivalent
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Characterization Example

The circle is the only space that has the following property:

No single point separates;

each pair of points separates.
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Classification Examples

@ Ever compact connected surface is either a 2-sphere,
an n-holed torus, or the connected sum of n projective
planes.

These surfaces are distinguished by their orientability
and Euler characteristic.

@ Every map from S' to itself is homotopic to one of the
maps f; given by fi(z) = Z'.
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Equivalent Embeddings

As a specific example of the second question, given a
subspace A of R", and two embeddings

f:A—R"andg: A— R",

when should we view these embeddings as equivalent, or
as topologically the same?

A
f g
R”/ \R”
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For example, consider knots in R® as embeddings of
circles:
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Definition of Equivalence

Def. Embeddings f: A— R"and g: A— R" are
equivalent if there is a homeomorphism h: R" — R" such

that hof = g.
A
f g
Rn/ h\Rn

Theorem: Any two embeddings of a circle in R? are
equivalent.

This is known as the Schonflies Theorem, one
consequence of which is the Jordan Curve Theorem.
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The Cantor Set

The Standard Middle Thirds Cantor Set C in R? is
defined as follows: S =[0,1], Sy =[0,3]U[5,1]
Inductively, S, has 2" closed intervals of length %

To get S,+1, delete the open middle third of each closed
interval in S,,.

Def. C= () S;.
i=0
Cantor Set in Base Three: Equivalently,

C—{i§|a, {0, 2}}
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Stages in Construction

First 5 Stages of Cantor Set
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Characterization

Topologically, the Cantor Set is characterized as follows:

Theorem:
A space X is homeomorphic to the Cantor set C

if and only if X is
@ totally disconnected
(every component is a single point)
@ compact
@ every point is a limit point
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Procedure for Producing Cantor Sets

The preceding characterization allows us to show that the
following procedure always yields a space homeomorphic
to the Cantor Set:

Let Ay be a finite collection of pairwise disjoint compact
subsets of R".

Assume that A is a finite collection of pairwise disjoint
nonempty compact subsets of R” so that each set in Ak is
contained in some element of Ax_1 and so that each
element of Ax_1 contains at least two elements of Agk.
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Procedure, Continued

Theorem:
If the diameter of the sets in A, goes to 0 as k — oo, then
X = M} _4Ax is a Cantor set.

One pattern that leads to a non-standard Cantor Set in R°:
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Properties of the Cantor Set

@ Every compact metric space is the continuous image
of a subspace of C

C contains a copy of every 0 dimensional space
CcC= H7°:1 {07 1 }

Mz c=c

The measure of the removed intervals from [0, 1] to
obtain Cis 1. (2, 0 = 1)

C is uncountable

C is homogenous (in fact there is a self
homeomorphism taking any countable dense subset
to any other such subset)
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More Properties

@ There is a continuous nondecreasing function f from
C onto / = [0,1].

@ There is a continuous function f from

C:HConto Hl: .
=1 =1
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More Properties (Analysis)

There is a continuous nondecreasing function from / onto /
that is constant on / — C. So there is a continuous function
from [ to /, with derivative 0 almost everywhere, that is not
constant.
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Yet More Properties

@ Any two copies of C in R? are equivalent

@ There are uncountably many inequivalent copies of C
in RS,
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Higher Dimensional Analogs

Note: For each positive integer n, there is an
n-dimensional analog of the Cantor Set, u,, in R2"+!
characterized by:

@ compact

@ n-dimensional

@ n—1 connected (C" 1)

@ locally n— 1 connected (LC" )
@ Disjoint n cells property

Un has analogous properties to C, in particular, it contains
a copy of every n-dimensional space.
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The One Dimensional Universal Space u;4

Uy is the Menger cube or Menger sponge.
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Closeup View
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Inequivalent Cantor Sets

Sher (1968) showed that any two constructions as above in
R® that yield equivalent Cantor Sets must have the same
number of tori at each stage.

How to get inequivalent such Cantor sets?
Vary the number of tori at each stage.

What if numbers are kept the same?
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Links with Twists
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Close Up View
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Other types of Embeddings

There are nonstandard Cantor sets C in R®:
@ that have simply connected complement,

@ that are rigidly embedded (the only self
homeomorphism of C that extends to a
homeomorphism of R® is the identity), and

@ that have both of the above properties
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Relation to Algebra

The homogeneity group of C C R® is group of homeo-
morphisms of C that extend to homeomorphisms of R2.

The standardly Cantor, at one extreme, is strongly
homeogeneously embedded. That is, the homogeneity
group is the full group of self-homeomorphisms of the
Cantor set, an extremely rich group (there is such a
homeomorphism taking any countable dense set to any
other).

At the other extreme are rigidly embedded Cantor sets, i.e.
those Cantor sets for which only the identity
homeomorphism extends.
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Result, Conjecture

Theorem: (G, Repovs-2013) For every finitely generated
Abelian group G, there is a Cantor set Cg in R® with
homogeneity group G.

Conjecture: For every finitely generated group G, there is
a Cantor set Cg in R® with homogeneity group G.
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Dimension - Topological and Hausdorff

Every Cantor set has topological dimension O.

The standard Cantor set in R has Hausdorff dimension

In(2)
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lterated Function Systems

The Cantor set is the invariant set of the iterated function
system:

Wl

n) =3 RO =3+

W X

D. Garity (Oregon State University) Cantor Sets Oct. 2014 27127



