MTH 655/9 Winter 2017 Finite Elements student contributions

Instructor: M. Peszynska Mathematics, Oregon State University

Solvers used

- Solvers used:
 - Fem1d_2017
 - ACF
 - IFISS
 - MFEM
 - Deal ii
 - FeNiCS
 - Moose

- Student contributors:
 - Math + Engrg (Nuclear, CCE, Wood)
 - AA, CS, DF, DH, ME, EH, TA, DW, JH, GX, ZY, DW, YQ, JU, WM, SK

Grids with distmesh, mesh2d solution to Poisson's equation

Grids, cd

SK

• Use deal ii, and Blossom for meshing

Y Z_X

GX/DF

ΖΥ

More exotics

AA/CS

Sometimes something goes wrong (Lab 5)

Lack of coercivity

More exotic domains: solution to an elliptic equation and to the wave equations

Solution of the Problem

WM

Eigenfunctions for an exotic domain

Figure 1: Final solution to heat equation for Cayuga Lake with homogenous Dirichlet boundary conditions; the negative space represents a fictitious island

ME/EH

igure 2: Eigenvectors for n = 1 and n = 5 for the final solution of the heat equation

More exotic domains and eigenfunctions

Sometimes something goes wrong (Lab 5)

But can be corrected

And eventually gets corrected

Eigenfunctions for Dirichlet problem

AA/CS

Eigenfunctions

Stokes/Darcy, (Final project)

TA/JH/DW

Stokes, with deal ii

JU

Complex physics model: bound water in wood engineering (diffusion with sorption)

DW

Figure 8. Bound water concentration profile after 2 days

More complex physics: work in progress

 $(I + \eta A_{\phi})\phi_t + A_{\phi}(\alpha(\phi) + P) = \nabla \cdot (1 - \phi)\nabla \Delta^{-1}F, \ \phi(0) = \phi_0,$

DH

Time dependent problems

ME/EH

• Thanks for a great term and your hard work!