THE DIFFUSION EQUATION

1. Introduction.

We shall consider some problems for the diffusion equation
(1) Ut = Ugy

and its non-homogeneous variations. Since the results on parabolic equations do
not depend on the dimension, we shall restrict our attention to this case of one
spatial variable.

Let’s begin by seeking candidates for a well-posed problem for the diffusion
equation. We use the energy integral method to get some elementary uniqueness
results. Let the curves a(t), b(t) be given for 0 < ¢ < T, and let u(x,t) be a solution
of (1) in the region a(t) < z < b(t), 0 <t < T.

x = a(t)

x = b(t)

FIGURE 1

Integrate (1) over this interval to obtain

d e

— u(z,t) de =
dt a(t)

b(t)
/ ol 0 0 D 6 = 0, Dlma () =
a(t
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This shows that the total integral of the solution is changed by the addition of flux
ug(x,t) at the endpoints or by the increase of the length of the interval. This yields
an estimate of the mean value of the solution.

In order to get a different and possibly more substantial estimate of a solution, we
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first multiply (1) by u and then integrate over the interval (a(t), b(t)) and calculate

d @

— u?(x,t) de =
dt a(t)

b(t)
/ 2’!1,(:13, t)ut(xa t) dr + u? (33, t) |$=b(t)bl (t) - u? (‘Ta t) ‘mza(t)a’(t) =
a(t)

(2) b(t)
/ 2“’('7:’ t)uill-’E (.77, t) dr + U2 (.77, t) |$=b(t) v (t) - UZ (JZ, t) |w=a(t) Cl,,(t) =
a(t)

b(t) b(t)
9 / (1 (,£))? das + 20, iz 2,12
a(®)

+ U2 (.’,C, t) |a:=b(t)bl (t) - ’LL2 (Zl?, t) |m=a(t)a,(t) .

Suppose that we are given the boundary conditions, u(b(t),t) = wu(a(t),t) = 0.
Then we have from (2)

d @
— u?(z,t)dr <0,
dt a(t)

so we obtain the estimate
b(t) b(0)
(3) / u2(a:,t)dx§/ w?(z,0)dz, a(t)<z<blt),0<t<T.
a(t) a(0)
This easily yields the following uniqueness result.

Proposition 1. There is at most one solution u(x,t) in the region a(t) < z <
b(t), 0 <t <T of the Dirichlet initial-boundary-value problem

(4.a) U = Ugy + F(z,t), a(t) <z < b(t),
(4.b) u(a(t),t) = g1(t) , w(b(t),t) = ga(t), 0<t<T,
(4.c) u(z,0) =up(z), a(0) <z < b0).

The preceding argument can be improved substantially to obtain results on the
continuous dependence of the solution of (4) on the data. To this end, we first
prove the following.

Lemma (Poincaré). Let ¢ be a smooth function for a < x < b. Then

b b
/ o (z) dm§4(b—a)2/ (dz(x))2dx+2(b—a)¢2(b)

a Xz

Proof. Start by evaluating the integral

b b )
/a % (x — a)cp2(x)) dr = / (@2(@) dx +/ (x — a)%(gﬁ(w)) dz = (b— a)g02(b)

a a



and then use the inequality 2a0 < %oﬂ + 232 to obtain

b b
[ @<z [ |@- e 02 d + 6 - a0
b
< [[Ger@ +20- " G2 o+ - wp0) O

Now let u(z,t) be a solution of (4) with g1 = g2 = 0. (We shall investigate the
dependence on the boundary data below.) Following the estimates (2) and using
the preceding Lemma, we obtain

d @ 2( ) 1 b(t) 2( )
— u*(x,t) dx + / u”(x,t) dx
dt Jos) 2(b(t) —a(?))? Jagr
b(t) b(t)
gs/ w?(z,t) do + = F%(z,t) dx.
a(t) € Ja(t)

With the choice of m = min{m :0<t<T} and € = %, the above gives

d mit b(t)
pr ( exp{ 7} o (z,1) dx)
9 b(t)
< Zexp{™Y [ F2(a,t) do
m a(t)

Continuing as before, we get

b(t) —mt b(0)
/ u?(z,t) de < exp{T} / ud(z) dz
(5) a(t) (0)

b(s)
+exp{—}/ —exp{— / F?(z,s)dzds.
(s)

It follows that the solution depends continuously on F and ug in the sense of L?
norm. Furthermore, if F' decays appropriately as ¢ increases, then (5) shows that
the solution likewise decays exponentially in the L? norm as ¢ increases.

Similar results follow likewise for other boundary conditions. For example, if
the boundary points were constant, a(t) = a, b(t) = b, then we could replace the
Dirichlet boundary conditions in (4.b) by the corresponding Neumann or Robin
boundary conditions
(4.b)

wa(a(t),t) = hyu(alt), 1) = g1(t) , ua(b(t), ) + hou(b(t),t) = go(t), 0 <t<T,

with h1 Z 0, hg Z 0.
We illustrate some easy extensions of the preceding estimates. These are based on
the multiplication of the equation by an appropriate function of u before integrating
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over the interval. Thus suppose that u is a solution of the initial-boundary-value
problem (4). Let o(-) be a real-valued function which is Lipschitz continuous,
monotone, and o(0) = 0. Let X(-) denote its antiderivative with ¥(0) = 0. Multiply
the equation (4.a) by o(u(zx,t)) and integrate over the interval to obtain

PR b(t)
6) — Y(u(z,t)) dr o' (u(z, ug(z, )2 dz
© g, Sewnes [ o) o)

o) z=b(t)
_ / o T (@) ds+ o ula, ) el D20
+ [Z(u(d(), )] (t) — [E(ula(t), t))]a’(t)

Consider the case of homogeneous boundary conditions, g1(t) = ga2(t) = 0. Take
a(r) = |r|P~tsgn(r) where 1 < p < +oc and the sign function is given by sgn(r) = 1
for z > 0, sgn(0) = 0, and sgn(r) = —1 for x < 0. Then in (6) the boundary terms
are zero and o'(u) > 0, so it follows that

d1|| Ol /b(t) |F(z,t)| [u(z, )P~ d
——||lu(@®)|7, < z,t)| |u(x, )" " dx
dtp Lr (a(t),b(t)) a(t)

< IF @) zo ace),ben 1w o ey o) -

This leads to an explicit estimate on [|u(t)||zr(a(t),b¢)) by means of the following
inequality.

Lemma (Gronwall). Assumek € L'(0,T), k>0, 0 <a <1, andw € L>(0,T)

satisfies
t

w(t) < wo —}—/ k(s)w(s)*ds, a<t<hb.

Q

Then we have .
w(t)!™ < wé_a +/ k(s)ds, a<t<h.

Proof. Set G(t) =€+ wp + f; k(s)w(s)®ds with € > 0 and note that
G'(t) < k()G(),

S0 we obtain p
%G(t)l_a < (1—a)k(t).

Integrate this over [a,t] and let € — 0 to get the desired estimate. [J

The preceding estimates extend to the case p = 1 without difficulty. One can
either let o(-) be a smooth approximation of sgn(-) and then take limits, or just let
p — 1 in the above to obtain the corresponding results.

The case p = 400 can be treated similarly, but we add to it an order estimate
as follows. Assume that u(z,t) is a solution of (4) with g; < k, g2 < k with £ > 0.
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Define o (r)

= (r—k)™, where 27 = max{0, z} denotes the positive part of z. Then
we have 3(r) = 5((r —

2 ( k)T)2. Then from (6) we get

b
() - k)+lli2(a,b)ﬁ/ (F(2,1) " (u(,t) — k)" do

<NF@) M z2@p) (@) — k)Tl z2@a,p) -

dt2

The Gronwall inequality gives

t
1(u(®) = &) Fllz2qapy < ll(uo = )T llzeq@yy + | IF @) lze@y dt-
0

From here we obtain the following mazimum principle.

Proposition 2. Let u(z,t) be a solution in the region a(t) < x < b(t),0 <t < T
of the Dirichlet initial-boundary-value problem (4). If F(z,t) < 0 in the region,
then we have

max{u(z, t)}a(t)<w<b(t),0<t<T < max{uo(), 91(t), 92(t), 0}a(t)<a:<b(t),0<t<T .

Corollary. If F(z,t), uo(z), g1(t), g2(t) are all non-positive, then we have
u(z,t) <0 in the region.

This gives another uniqueness result, and it also yields a comparison principle.
If the data for a pair of initial-value problems is ordered, then the corresponding
solutions have that same order. This is particularly useful in obtaining information
about solutions from known solutions.

We seek an extension of the preceding maximum principle to cover the case of
unbounded regions. Denote the region, its parabolic boundary, and its top by

Gr ={(z,t): a(t) <z <b(t), 0<t<T},
Br ={(z,t): t(x —a(t))(x—b(t) =0, 0<t<T},
Cr={(z,T): o(T) <z <b(T)},

respectively. We assume that b(-) is a lower semicontinuous extended real valued
function, b : [0,T] — (—o00,+o00]. That is, for every to € [0,T] and a < b(to),
there is a neighborhood of ty such that o < b(t) for all ¢ in that neighborhood.
Equivalently, b={(a, +oc]} is open in [0, T] for each o € R. Likewise, assume that
a(+) : [0,T] = [—o0,00) is upper semicontinuous. It follows that Gr is open in R?.
In particular, is is sufficient for a(-), b(-) to be continuous at each ty € [0, T] where
their value is finite. However we have relaxed the assumptions of smoothness and
boundedness of the domain here. We can still obtain the maximum principle here
if we add an assumption of boundedness of the solution.

Theorem 1 (Maximum Principle). Let u(-,-) be an upper-bounded solution of
(4) with F < 0 in Gp. Thensupg, u = supp,. u, i.e., ifu(s,t) < M for (s,t) € Br,
then it follows that u(z,t) < M for (z,t) € Gr.

Proof. Let K = sup{u(z,t) : (x,t) € Gr} and define v(z,t) = u(z,t) — (2t + z2)
on Gp. Then vy — vz, < 0 and

K-M

v(z,t) < K —ex? < M if 2% >
€
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Define G = {(z,t) € Gr: |z| < Aandt < A}. If A > /E=M then v(s,t) <
M for (s,t) € B#, so by the Proposition 2 we get v(z,t) < M for (r,t) € G#4. This
holds for all A > /E=Y 5o we have v(x,t) < M for (z,t) € Gr. But this means

that for all (z,t) € Gr we have u(z,t) < M + (2t + 22) for each € > 0, hence,
u(z,t) <M. O

Corollary. There is at most one bounded solution of

Ut = Ugg + F(z,1), (x,t) € Gr, u(s,t) = g(s,t) (s,t) € Br.

Exercises.

1. Prove the Corollary.

2. Use the technique of Proposition 2 to prove a maximum principle for the
two-point boundary-value problem

uw(z) —u'(z) = F(z), a<z<b, u(a) = by, u(b) = bsy.

Hint: Start by subtracting & from both sides of the equation.
Prove a maximum principle for the problem

—u'(z)=F(z), a<z<b, u(a) = by, u(b) = bsy.

Hint: Use the Poincaré Lemma.
3. Use the preceding technique to prove a maximum principle for the boundary-
value problem in R”,

—Apu(z)=F(x), z€ G, u(s)=g(s), s€0G.
4. Prove a maximum principle for the initial-boundary-value problem

du(z,t)
ot

Apu(z,t) = F(z,t), z€q,

u(s,t) = g(s,t), s€0G, 0<t<T,
u(z,0) =up(z), z€G.

M

5. Show that the function u(z,t) = t%e_ﬁ_ satisfies (1) in the upper half-plane,

2
G = {(z,t) : t > 0}. show that for every x € R, limy_,o u(z,t) = 0. Explain why
the Corollary implies that u(-,-) cannot be extended continuously to the closure,

G. Show this also directly.

Y



2. The Initial-Value Problem.
As a first step to finding a solution of (1), consider the function e®®*+#t, This
is a solution of the diffusion equation (1.1) only if o? = 3, so we obtain a family

of solutions, e®*+2’t o ¢ C. In order for these to be bounded on ¢t > 0, we
need each « to be pure imaginary, say, o = puz, and the corresponding solutions,
ei’”"”_“%, i € R The real parts of these are e~ H't cos(pux), p € R. Finally, the
continuous linear combination

u(z,t) = / et cos(px) du
0

of all these solutions with uniform weight is a solution of (1) for ¢ > 0, and it plays
a special role.
Let’s evaluate this integral. Introduce A by the change of variable tu? = A2, du =

L d\ for which
u(z,t) / cos( )d)\.
\[

Vit
Define K(s) = [;° e~ cos(sA) dA and then compute
]_ _)\2 S
)\e * sin (sA)d\ = 5¢ 8 cos(sA) dA = —EK(S) .

Solve this to get In K(s) = —% +c¢,50 K(s) = Me=*F for some M. This is found

to be -
M:K(O):/ eV dA = g
0

so we have K(s) = L e~ and therefore

22

u(z,t) = 4%@_7, zeR t>0.

After normalizing this function (see (e) below), we get the following.

Definition. The fundamental solution of (1.1) is defined to be the function

—
[

1 K(z,t) = e"d, zeR, t>0.
(1 0=

Lemma 1.
(a.) Ki(z,t) — Kgz(x,t) = 0.
(b.) K(z,t) > 0.
(c.) If t > 0, K(x,t) — 0 exponentially as |z| — oo, and the same holds for
each derivative of K (x,t).
(d.) For each 6 > 0, limy\ 0 K (z,t) = 0 uniformly on {z : || > §}.
(e) [2 K(z,t)dz=1.
(f.) hmt\o f|$|25 (z,t)dz =0 for each 6 > 0.
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Proof. For (a) it suffices to differentiate and check, and (b) is obvious. For (c), note
that each derivative introduces a factor which is a rational function of x,t, so the

result follows by 1’'Hopital’s rule. For |z| > 6, we have K (z,t) < ﬁe_i_t, so the
uniform convergence of (d) follows. For (e) we compute

]_ o0 a:2 ]_ o0 2 1 o0 2
e % dx = / e " V4atd :—/ e duy=1.
Vart /_oo Vart J o a NZ I . #

A similar calculation gives

1 2

K(a:,t)d:c:—/ e * dp—0
jal>8 VT >

as t — 0, so (f) follows. 0O

The fundamental solution is used to construct solutions of initial-boundary-value
problems for the diffusion equation. We begin with the initial-value problem.

Theorem 2. Let f(-) : R — R be a bounded and continuous function. Define
u(-,-) : Rx [0,00) = R by

[ K@= 0f©de, t>0,

f(z), t=0.

Then u(-,-) is bounded and continuous on {(x,t) : t > 0}, it is infinitely differen-
tiable in {(z,t) : t > 0}, and it satisfies the initial-value problem

(2) u(z,t) = {

(3.a) ut(x,t) — Uge(z,8) =0, xz€R, t>0,
u(z,0) = f(z).

Proof. Set M = sup{|f(z)| : # € R} and note that u(z,t) < [*° K(z—¢&,t)M d¢ =
M by Lemma 1.b and Lemma 1l.e. From Lemma 1.c it follows that u(-,-) is well
defined and infinitely differentiable, and by Lemma 1.a it satisfies (3.a).

It remains only to demonstrate the continuity for ¢ N\, 0. To this end, let x(y €
R, € > 0 and A be chosen with A > |zg|. Since f(-) is uniformly continuous
on [—A, A], there is a § > 0 such that (z¢ — 20,29 + 2J) C [—A, A] and that for
T,y € [-A, A], |z —y| <26 we have |f(z) — f(y)| < 5. We write

’U,(;L‘,t) = GRK(n’t) f(93+77) dn

— K(n,t) f(z+n)dy+ K(n,t) f(z+n)dn
[n|>6 In|<é

and then use Lemma 1.e to obtain
u(m, t) - f(iUo)
B /| o KOO Ut = f@o)dnt | Kt) (fo+n) = fwo)) dn.

[n|<é
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If |z — x| <6, |p| <9, then we have z +n € [-A4, 4], |(x+n) — xo| < 26, so
|f(z +n) — f(zo)] < 5. Hence, when |z — x| < 6 we have

€
| K(n,t) (f(z+n) = f(zo)) dn| < 3.
In|<é
Also, from Lemma 1.f it follows that there is a t* > 0 for which
€
| K(n,t) (f(z+n) — f(zo)) dn| < 2M K(n,t)dn <
In|>6 In|>6

whenever 0 < ¢t < t*. In summary, whenever | — zo| < § and 0 < ¢t < t*, we have
lu(z,t) — f(zo)| <e. O

Corollary 1. The convergence }{r(l) u(z,t) = f(x) is uniform on compact subsets
of R.

We consider next a case in which the data is not continuous, specifically, the case
of the Heaviside function, f(z) = H(z) where H(z) = 1 for z > 0 and H(z) =0
for < 0. With this initial data the formula (2) defines the function

u(x,t):/OOOK(a:—f,t)dg

° _(m—£>2
4t

= e
Varnt Jo \/47r ez
1 \ﬁ €2

It is straightforward to check that this is, in fact, the solution of the initial-value
problem (3) as before, even with the discontinuity at the origin. Only the uniformity
of the convergence as t N\, 0 is (necessarily) lost here.

Now we can use this special case to develop a formula for the solution arising
from an initial function f(-) which is bounded and continuous except at the origin,
where we assume it has both left and right sided limits,

F07) = Lim fl@), f(07)= ii;(r(l)f(a:) :

e4t dn

Denote the jump in f(-) at the origin by o = f(07) — f(07). Then we can write
f(-) as the sum of its continuous part and its jump by

f(z) = (f(z) —oH(z)) + oH(z).

Now we can apply Theorem 2 to the first part and the above example to the second
and obtain by linearity the solution of (3) with the more general initial-value f(-).
This solution u(-, ) takes the limiting value at the origin determined by the mean
value of the left and right limits, i.e.,

1

o ulast) = f07) + 5 ( FOF) = F(07)) =

f0F) + £(07)
: :

The corresponding result holds for an initial function with discontinuity at any
point on the axis.
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Corollary 2. Let the function f(-) be bounded and piecewise continuous on R.
Then the function u(-,-) given by (2) in {(x,t) : t > 0} is bounded, infinitely
differentiable, satisfies the diffusion equation (3.a) in{(z,t) : t > 0}, and it satisfies
the initial condition

zd Ty
wlont) — 108 + )

i
(w,t)ifgco ,0) 2

Of course this is just f(zo) as before at each point xy where f(-) is continuous.

Remark. We showed above that the fundamental solution is given by

1 [ 2
K(z,t) = —/ e *tcos(ux) du.
0

™

Using this form in (2) with cos u(z — &) = cos(ux) cos(u€) + sin(px) sin(u) gives
the representation

u(z,t) = /_ i /O°° %6_“%(008(/13:) cos(pg) + sin(pz) sin(ug)) f(§) dp d€ -

By interchanging the order of integration, we obtain

(4) u(@,t) = /000 e (a(p) cos(ux) + b(p) sin(ua)) dps,

where
o= [ r©esmde,  bw= [ ©sinGue) de.

When ¢ = 0, (2) is the Fourier integral theorem. Although it is obtained here for a
very different class of functions, this calculation suggests that the Fourier theorem
is extremely useful in computing solutions of the initial-value problem.

Theorem 2 shows that for each function f(-) in a certain class, X, there is
exactly one solution (-, -) of the initial-value problem. In particular, X is the class
of continuous and bounded functions on R. Moreover, for each ¢t > 0, the function
u(+,t) belongs to that class, and it is given by (2). Define the operator which gives
the solution at time ¢t > 0 as a function of the initial data by S(¢). That is we
define S(t) : X — X by S(¢)f(:) = u(-,t) for each ¢ > 0, and S(0) = I, the identity.
These operators are well-defined by Theorem 2. From the representation (4) we
see that S(t) can be described as follows: expand the function f(-) in its Fourier
representation and then multiply the u** term by et to obtain the expansion
of S(t)f(-). This suggests the similarity of the operators S(t) to (the action of)
exponential functions. This similarity is actually quite profound. In fact, if we
define the differential operator A by

Alw)=fin X <= u, f€ X and —u"(z) = f(z), z € R,
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then the initial-value problem (3) is of the form
v (t) + A(u(t)) =0, u(0)=fin X.

The solution of this problem is (formally) given by the exponential operators u(t) =
e~ At f t >0, so we have e~4* = S(t). From (3.a) we have S’(t) = —A S(t).

Let S(-) denote the family of solution operators given as above by Theorem 2.
Since the equation is linear, if f;, fo € X are given, then the function S(¢) f1+S(t) f2
is a solution of the initial value problem with initial data f; + fo. By uniqueness, it
follows that S(t) f1+S(t) f2 = S(t)(f1+ f2)- A similar argument holds for multiples
of f € X, so we conclude that each S(t) is a linear operator on X. Now let 7 > 0
be fixed. If u(t) = S(t)f, then the function ¢ — wu(t + 7) is the solution of the
equation (3.a) with initial value u(7) = S(7)f. That is, u(t + 7) = S(t)u(r), so we
have S(t + 7)f = S(t) S(7) f for each f € X, and this shows that

St+71)=St)S(r), t, 7>0.

This is the semigroup property of the operators S(t). We have shown that S(-) :
R — L(X) is a semigroup homomorphism from the non-negative real numbers with
addition to the linear operators on X with composition.

Cousider now the non-homogeneous initial-value problem

(5.a) ug(z,t) — Uge(x,t) = F(x,t), xz€R, t>0,
(5.b) u(z,0) = f(z).

We can write this (formally) as before,

(6) u'(t) + A(u(t)) = F(t), u(0)= fin X.

If u(-) is any solution of (6) and S(-) is the semigroup of operators, then for each
t > 0 we consider the map s — S(t — s)u(s), 0 < s < t. The derivative is given by

%S(t —s)u(s) = S(t — s)u'(s) + S'(t — s)u(s)
S(t—s)(—Au(s)+ F(s)) — AS(t — s)u(s) = S(t — s)F(s).

Integrating this yields
t
u(t) = S(t)f+/ S(t—s)F(s)ds, t>0,
0
and it suggests the following result.

Theorem 3 (Duhamel). Let f(-) be bounded and continuous on R, and let F(-,-)
be bounded and continuous on R x [0,T] with T > 0. Define u(-,-) : Rx (0,T7] - R
by

M) wwi= [ Ke-enfe de

t [e’s)
+/()/_OOK(x—§,t—s)F(§,s)d§d3 zeR 0<t<T.
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Then u(-,-) is bounded and continuous on {(z,t) : 0 < t < T}, it is infinitely
differentiable in {(x,t) : 0 <t < T}, and it satisfies the initial-value problem

t), ze€R 0<t<T,

(8.&) Ug (37, t) Umaz( ) (
8.b u(z,0) = f(z).

Proof outline. It suffices to check that the second term in (7) is a solution of (8.a).
(It clearly vanishes at ¢t = 07.) We compute

a t [e’s)
&/0 / K(z—&t—s)F(& s)dEds

t [es) [e9]

— [ [ K-t 9P sl [ K@-6o- 9P i
S—r — oo

and pay special atention to the singularity of K(z — £,t) at t = 0*. From Lemma

1l.a we get

/ /OO 8—2K(:c f,t—s)F(g,s)dgds—i—li_r)r%)/oo K(z — & 7)F(£,t)dE.

Now take the derivatives outside the integral in the first term and use Theorem 2
for the second to obtain

o [t [
5/0/_ K(z — &t —s)F(&,s) dgds
axz// K(z— &t —s)F( 5)déds + F(x,t) dE .

This is the desired result, namely, (8.a). O

3. Green’s Function.

We have obtained existence-uniqueness results for the initial-value problem (2.8)
on the upper half-plane, {(x,t) : ¢ > 0}. Also we have established uniqueness
for the initial-boundary-value problem (1.4) for a rather general domain. Here we
shall develop a representation of the solution on such general domains as an integral
operator on the data. Recall that for the Laplace equation, which is self-adjoint,
we used a particular family of (singular) solutions of the (adjoint) equation to
construct a kernel for an integral representation based on the divergence theorem.
The definition of the adjoint equation is essentially a divergence requirement, as we
shall see below.

Denote the diffusion operator by L[u] = us — uy,. We want to define an operator
M| -] by the requirement that the expression vL[u] — uM [v] be a divergence. Thus,
we compute

vL[u] = v(ug — tugy) = (Vi) — veu — (Vugy — UV )z + UVzy

=uM[v] = V - (vuy — uvg, uv)



13

where M[v] = —vy — vg,. Recall that the fundamental solution was defined by

1 —a?
(47rt)% exp 4 , t>0.

K(z,t) =

We note that for each fixed pair (&, 7), the function K (z — £,t — 7) satisfies K; —
K.y, = 0 where t > 7, and for each fixed pair (z,t), this function satisfies the
adjoint equation, K, + K¢ = 0 where 7 < t. These observations will be useful in
our development of an integral representation for the solution of the problem.

The initial-boundary-value problem is given as follows. Let a(t) < b(t) be given
for to <t < T, and define G = {(z,t) : a(t) < z < b(t), to <t < T}. We denote
the lateral boundary by Br = {(z,t) : x = a(t) or z = b(t), t, <t < T} and the
initial characteristic line by Ci, = {(z,t0) : a(to) < < b(to)}. Let the functions
F, f, and g1, g2 be given, respectively, on G, Cy,, and on the inverval [to, T']. We
seek a function u on G for which u,, and u; are continuous, and w satisfies

(1L.a) Llu] = F(z,t), (z,t)€ G,
(1.b) u(a(t),t) = g1(t), u(b(t),t) = g2(t), t € [to, T},
(1.c) u(z,to) = f(z), alto) <z <b(ty).

Llu =F

FIGURE 2

Let (z,t) € G and consider the region Gy = {({,7) € G : T < t} obtained by
passing a characteristic ( 7 = constant) through (z,¢). We would like to use the
identity

@) / [ )~ ump) = - / (Wit — vy, wv) - 7 ds

0G,

with u a solution of (1) and with v(§,7) = K(xz —&,t — 7). However this choice of v
is singular at (£, 7) = (,t). For the elliptic problem we isolated the singularity by
a sphere and let the radius of the sphere decrease to zero. Because the singularity
here is on the boundary of the region, we can move it outside by a small distance
and then let that distance decrease to zero.
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Let (z,t) € G, and define G; as above and By = BN Gy, Cy = Gy N {r =t}. Let
e > 0 and define the function K (¢,7) = K(z —£,t + ¢ — 7). Note that K. has its
singularity at the point (z,t+ ¢) ¢ G.

Let u be a solution in C?(G) N C*(G) of the initial-boundary-value problem (1).

Set v = K., and note that M[v] =0, so from (2) we obtain

/ / K.(€, 7)1 (€, 7) dédr = — / (Keug — w(Ko)e)n — (uKe)ng) ds
Gy By

I,

where (ni,m3) is the unit outward normal along the boundary 0G;. We shall
consider the limit of this identity as € \, 0. Since the distance from B; to the
points (z,t 4+ €) : € > 0 is positive, the integrands in the first two terms converge
uniformly to the obvious limits. In order to examine the last term, we set p(§) =
u(&,t), a=a(t), B =>b(t), so it may be written as

/Ct uleds = /ﬂ P& K (x — & ¢e)dE.

«

uK, ds + / uK. ds,
C

tg

But this we recognize as the solution of the initial-value problem with initial data
given as ¢ extended as 0 off of [«, (], so we know it has the limit ¢(x) as € \, 0.
Thus, we obtain the representation

(3) u(x,t):/B(K(x—ﬁ,t—T)udg,T)—u(g,T)Kg(x—£,t—7'))n1d8(,577)

_/ U(£,T)K(a:—§,t—7-)n2 ds(.‘j,T) +/ UK(x—g,t—to))dS
By

+ / K(z— &t —7)F (€ 7) dédr
Gy

for any solution of the diffusion equation (1.a).

The formula (3) does not serve to represent a solution of the initial-boundary-
value problem (1) in terms of its data, since the first term contains the derivative
of the solution on the lateral boundary. This quantity is not immediately available
from (1). We shall eliminate that term from the representation (3) by using in place
of the singular solution K(-,-) an appropriate modification. This modified kernel
for (3) will depend not only on the equation but also on the domain G on which
the problem is posed.

Definition. The Green’s function for the initial-boundary-value problem (1) on
the region G is given by

Gz, t,&,7)=K(x - &t —7) —w(z,t,§,T)
where K (-,-) is the fundamental solution and, for each (z,t) € G, the function
w(z,t,-,-) € C?(Gy) N CY(Gy) satisfies
Mw(z,t,&, 7)) = —w; —wge =0, (§,7) € Gy,
(4) w(z,t,{,7)=K(x—-&t—71), (7)€ By,
w(z,t,&,t) =0, (&t)€C;.
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Note that the operator M| - | is equivalent to L| - | under the time-reversing change
of variable, 7 = —t, so it follows from our uniqueness results that there is at most
one such Green’s function. By repeating the discussion which led to (3), but with
K (-,-) replaced by G(z,t,{, ), we obtain

(5) u(z,t)= —/B u(§, 7)Ge(x,t, &, T) n1ds e

+ G(:L',t,f,to)df-l—/ G(:L',t,f,T)F(f,T)dde.
Gy

Ctq

Note that in the first integral we have n; ds( ;) = £d7 and £ = a(7) or £ = b(7).
This holds in general for any solution u € C?(G)NC!(G) of (1), and if the boundary
0G can be smoothly approximated from inside G, we need only to assume that u €
C?(G)NC(G). All of the information required for the right side of (5) is available as
data in the initial-boundary-value problem (1). Finally, note that if we (formally)
set F' = (¢ ), the point source located at (&, 7), then u(x,t) = G(z,t,&,7) is the
corresponding solution arising from that point source. Thus, the Greens function
is frequently called the source function or influence function for the problem.

The preceding characterization motivates the construction of the Greens function
by reflection about simple boundaries, and we shall develop this approach in a
couple of examples to follow.

Example 1: Half-plane. Let G = {(z,t) : t > 0}, the upper half-plane. Since
C; = R x {t}, it follows that we have w = 0, so

G(z,t,&,7)=K(x —&t—1).
Note also that By = (). Thus, the representation (5) agrees with the Duhamel
formula (2.7).

Example 2: Quarter-plane. Let G = {(z,t): = > 0, t > 0}, the upper quarter-
plane. The initial-boundary-value problem is to find a function u on G for which

(6.2) U — Uy = F(z,t), z>0,t>0,
(6.b) u(0,t) =g(t), t>0,
(6.c) u(z,0) = f(z), 0<uz.

We want to find the function w which satisfies (4). First note that with (z,t) fixed
in G, any function of the form w(z,t,&,7) = aK(—z —&,t—7) = aK(x +&,t—7)
satisfies the partial differential equation in GG; and the initial condition on C;, since
x > 0 and the singularity is at the point (—z,t) ¢ G. By choosing a = 1 we attain
the boundary condition on By = {(0,7) : 0 < 7 < t}. Thus, the Green’s function
is given by

G, t,6,1)=K(x—-&t—7)—K(x+&,t—1).

Note that we could have anticipated this formula by regarding it as the source
function arising from two sources, one with a charge of +1 at (£, 7) and another
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with a charge of —1 at (=&, 7), so they balance out on the boundary. In order to
use the representation (5), we need to compute

1 (w&ﬂﬂx—@ wuﬂ—%x+8>

=— 7 1|e€ 4(t—r) — e 4(t-T1)
(Am(t—17))2

Ge(,t,6,7) 2 —1) X —1)

and evaluate it on the boundary to obtain
(
Ge(,t,0,7) = ————— €T |

The representation (5) is given by

—(2)?2
=7 g(r)dr

"0 = || Ze
+/0 (K(z—&,t) — K(z+&,1)) £(£) d¢

+/0/0 (K(x—¢&t—7)— K(x+&,t—71))F(& 7)dédr.

The analogue of Theorem 2.7 holds here if the boundary data g(-) is bounded and
continuous.

Example 3: Cylinder. Let G ={(z,t): 0<z<b,0<t<T}=(0,b) x(0,7),
the indicated cylinder in the plane. The initial-boundary-value problem is to find
a function u on G for which

(7.a) Up — Ugy = F(z,t), 0<2<b0<t<T,
(7.b) u(0,t) = g1(t), u(b,t) =ga2(t) 0<t<T,
(7.c) u(z,0) = f(z), 0<z<b.

Let’s try to obtain the Green’s function for this problem directly by placing charges
at appropriate points in the plane. We start with a charge of +1 located at the
point (£, 7) € G. To balance this about the boundary line £ = 0, we place a charge
of —1 at the point (—¢, 7). Then to balance these two with respect to the boundary
line £ = b, we place charges —1 at (—& + 2b,7) and +1 at (£ + 2b, 7).

E_Zb _E E —E+2b E+2b
+ - + - +

-2b -b 0 b 2b 3b

FIGURE 3
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These are balanced about £ = 0 by charges —1 and +1 at (—£—2b, 7) and (£ —2b, 7),
respectively, and so on. This leads to a sequence of charges to obtain the balance
simultaneously about both boundary points (see Figure 3) and the corresponding
Green’s function representation

n=+4oo
Gz, t,&m)= Y (K(x—¢&-2nbt—71)— K(z+&—2nb,t— 1))
n=too —(z—&—2nb)2 —(z —2nb)?
e (tl NE 2 (exp S —exp ) |
m -7 2n:—oo

We will develop below an alternative representation of this Green’s function by
separation of variables.

Example 3: Wedge. We would like to construct the Green’s function for the
initial-boundary-value problem on a wedge

ug(2,t) — Uge(x,t) = F(x,t) = >at, t >0,
u(at,t) =0, wu(z,0)=0.

We shall accomplish this by making an appropriate change of variable to reduce it
to the quarter-plane problem

ws(yas)_wyy(yas):H(y3S)a y>05 5>0.

Thus, let

be the indicated change of variable, and note that by the chain rule we obtain
Wi + awy — Wy = H(x — at,t), x>at, t>0.
In order to eliminate the second term, we set w(y, s) = e*@Hu(z, t):
Ut + vt + a(Ugy + VzU) = Ugy + 205U, + (vf, + Ugg)u+e "H.

Thus, we would like to choose v so that v; + av, = vg + vz, and a = 2v,. That

is, v = gx — %t, so we have u(z,t) = e~ 5= 3 y(x — at,t). This function then

satisfies
U (2, 1) — Ugg (2, 1) = e 2@ IVH(z — at,t) = F(z,t) z>at, t>0,

as we desired. The solution of the quarter-plane problem can be written

S 400
w(y,s) = / / (K(y— €5 —7) = K(y+ & s — 7)) H(E, 7) dedr
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so we obtain the solution of the problem on the wedge in the form
u(z,t) =

t ptoo
e‘%(w—%t)// (K(z—at—§&t—7) - K(z—at+{t—7))
0o Jo
e%(§+%T)F(§ +arT, T) dde

After a change of variable this can be written as
t 400
uet)= [ [ GlatigF(E ) dedr
0 JarT

where
G(x,t,&,7)=e 3@ O-3C"N(K(z—at—E+ar,t—7)—K(z—at+&—aT,t—7))

is necessarily the corresponding Green’s function.



