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Abstract This paper considers several single species growth models featuring a car-
rying capacity, which are subject to random disturbances that lead to instantaneous
population reduction at the disturbance times. This is motivated in part by growing
concerns about the impacts of climate change. Our main goal is to understand whether
or not the species can persist in the long run. We consider the discrete-time stochastic
process obtained by sampling the system immediately after the disturbances, and find
various thresholds for several modes of convergence of this discrete process, including
thresholds for the absence or existence of a positively supported invariant distribution.
These thresholds are given explicitly in terms of the intensity and frequency of the
disturbances on the one hand, and the population’s growth characteristics on the other.
We also perform a similar threshold analysis for the original continuous-time stochas-
tic process, and obtain a formula that allows us to express the invariant distribution
for this continuous-time process in terms of the invariant distribution of the discrete-
time process, and vice versa. Examples illustrate that these distributions can differ,
and this sends a cautionary message to practitioners who wish to parameterize these
and related models using field data. Our analysis relies heavily on a particular feature
shared by all the deterministic growth models considered here, namely that their solu-
tions exhibit an exponentially weighted averaging property between a function of the
initial condition, and the same function applied to the carrying capacity. This property
is due to the fact that these systems can be transformed into affine systems.
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1 Introduction

Many populations are subject to disturbance events that lead to high mortality, yet
also provide future growth opportunities because the disturbances often improve the
population’s habitat. InMcMullen et al. (2017) for instance, the effect of river floodings
on 3 types of insects,mayflies, dragonflies and ostracodswas examined, and the impact
of savanna fires on perennial grasses was assessed using a logistic growth model with
time-varying parameters that captured both the disturbances as well as improvements
to the habitats following a disturbance event. The main question addressed was to
determine via simulations when the population was resilient enough to withstand
these disturbances, and when it was not. An important feature of disturbances that
was neglected in the analysis of this model, is the random nature, both in time as
well as in intensity, with which they occur. One goal of this paper is to address this
very issue by considering a class of population growth models which are disturbed
randomly. This class of models is larger than the one in McMullen et al. (2017),
but it does not incorporate habitat improvements following disturbance events; in
other words, a worst-case scenario is considered here. Our main goal is to analyze
when these models predict population extinction or persistence. Our analysis leads to
certain parameter combinations between ecological parameters on the one hand, and
disturbance parameters on the other, for which threshold values can be determined
such that when these thresholds are crossed, the system’s extinction or persistence
behavior changes fundamentally.

Themodel considered here takes the formof a deterministic continuous-timegrowth
model which is interrupted by discrete, stochastic events that reduce the population
to a stochastically determined fraction of the current population size. Let N (t) denote
the population’s size at time t ≥ 0, set τ0 = 0, and assume that the disturbances occur
at the random times τ1, τ2, . . . :

dN

dt
(t) = G(N (t)), τi ≤ t < τi+1, i = 0, 1, 2, . . . ,

N (τi ) = Di N (τ−
i ), i = 1, 2, . . . (1)

Here G(N ) represents the deterministic growth rate in between consecutive distur-
bances (e.g. of logistic form, although our proposed theory can handle other commonly
used growth rates), and Di are the random variables for the fraction to which the
population N (τ−

i ) at the disturbance time τi is reduced by the disturbance. Further
assumptions regarding the population’s growth rate function G(N ), the disturbance
times τi , and the disturbance fractions Di will be introduced later in the paper. Our
main goal is to understand the dynamics of the resulting discrete-time stochastic pro-
cess N (τi ), i = 0, 1, 2, . . . , as well as of the continuous-time stochastic process N (t),
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t ≥ 0, in particular with respect to population extinction or persistence. These two
processes are analyzed separately. For the discrete-time process we take advantage
of a rather extensive theory and methods whose development and extensive recent
review are available in Bhattacharya and Majumdar (2007) and Schreiber (2012). For
the continuous-time process, and its relationship to the discrete-time process, we take
advantage of the general theory of Davis (1984) and Costa (1990) for piecewise deter-
ministicMarkov processes; also see Löpker and Palmowski (2013) for a recent historic
perspective on applications of this class of models. Several modes of convergence are
investigated for these models, including convergence of expected values, almost sure
convergence to extinction (sample path by sample path), and convergence in distribu-
tion to non-trivial invariant distributions.We illustrate our theory on several commonly
used undisturbed growthmodels [exponential, logistic, Richards (1959) andGompertz
1825], that share an averaging principle that does not seem to be widely known, but is
of interest in its own right. We derive thresholds for the various modes of convergence
which are stated in terms of the model parameters and the disturbance characteristics,
hereby explicitly and quantitatively linking biological and physical features of the
processes. We also present simulation results from an open-source implementation of
the random catastrophe model in the Python programming language.

2 Background

2.1 Deterministic population growth models and an averaging principle

A generic class of deterministic continuous time models of population growth found
in biology can be cast as the unique solution N (t), t ≥ 0, to the autonomous growth
equation

dN (t)

dt
= G(N (t)), N (0) = N0, with N0 < K , (2)

where the growth function G is assumed to be smooth, zero at N = 0 and N = K and
positive on (0, K ), and where K > 0 represents the population’s carrying capacity.
For given N (0) = N0 > 0, with N0 < K , one has limt→∞ N (t) = K . In addition,
the existence of a maximal per capita growth rate r := limN↘0 G(N )/N is generally
assumed, although we shall consider an example belowwhere this limit does not exist.
Of course there are natural phenomena, such as Allee effects, that are not captured by
this class of models. Kingsland (1982) provides a very nice summary of the historical
development with extensive references.

As observed by Lotka (1925), taking only the first two terms of a Taylor series
expansion for (smooth) G(N ) provides G(N ) = r N (1−N/K ), one obtains the well-
known logistic growth model, first introduced by Verhulst (1838). Retaining only
the linear term results in unchecked exponential growth, which is not limited by a
carrying capacity, i.e., K = ∞. On the other hand, any model with a linear lowest
order term will exhibit exponential growth at early times. The Richards growth model
(Richards 1959) is a more general model with this feature, generalizing the logistic
and exponential models as special cases. The Richards growth model is defined by
G(N ) = r N [1 − (N/K )α], with α > 0, and is also known as the theta-logistic model
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(Lande et al. 2003; Gilpin and Ayala 1973). By contrast, the Gompertz growth model,
defined by G(N ) = − r N ln(N/K ), does not possess a Taylor expansion at N = 0;
the derivative at N = 0 is infinite. So growth at early times is therefore faster than
exponential. Moreover, the parameter r is not the limit as N → 0 for G(N )/N . In
fact this limit is infinite.

While the various classical models presented above differ in details, their solutions
share a common averaging dynamic that may not be widely known. We provide this
unifying principle before proceeding to models that include stochastic disturbances:

Averaging Principle A suitably transformed measure of the population size evolves
as a temporally weighted average between the (transformed) initial population size
and the (transformed) carrying capacity.

The main feature of the models discussed above is that their solutions exhibit this
averaging principle, and that the transformation is independent of the initial condition:

Theorem 2.1 Let N (t) be the solution of equation (2) with initial condition N (0) =
N0. Fix an arbitrary ν > 0. Suppose that there exists a monotone (increasing or
decreasing) continuously differentiable transformation h : (0, K ] → R, such that:

h(N (t)) = h(K )
(
1 − e−νt)+ h(N0) e

−νt , ∀N0 ∈ (0, K ] and ∀t ≥ 0. (3)

Then x(t) := h(N (t)) must satisfy the following affine equation:

dx(t)

dt
= −νx(t) + νh(K ), (4)

for all t ≥ 0 and all N0 ∈ (0, K ].
Conversely, if there exists a monotone (increasing or decreasing) continuously

differentiable transformation h : (0, K ] → R such that x(t) := h(N (t)) satisfies the
affine Eq. (4) for all t ≥ 0 and all N0 ∈ (0, K ], then the solution N (t) of system (2)
with N (0) = N0, can be represented by (3), for all t ≥ 0, and for all N0 ∈ (0, K ].
Proof By applying the chain rule to x(t) = h(N (t)), (4) is easily verified to fol-
low from (3). For the converse, we first solve the affine equation by the variation of
parameters formula:

x(t) = x0 e
−νt +h(K )

(
1 − e−νt)

= h(N0) e
−νt +h(K )

(
1 − e−νt) ,

and then using the definition x(t) = h(N (t)), and the fact that h is invertible (because
it is monotone), we obtain (3) by applying the inverse h−1. 	


So the class of systems (2) for which there exists a rescaling function h(N ) such
that all solutions can be represented as in (3), are precisely those systems which can be
transformed to an affine system. Moreover, as we will see in our subsequent analysis,
this property is key to analyzing the behavior of these models under certain stochastic
disturbance scenarios. Beforemoving on to suchmodels, we determine the appropriate
rescaling functions for the logistic, Richards and Gompertz growth models:
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Example 2.1 For logistic growth, G(N ) = r N (1 − N/K ), the choice h(N ) = 1/N
transforms system (2) into (4) with ν = r . Consequently, the (transformed) solution
of (2) may be expressed as

1

N (t)
= 1

K
(1 − e−r t ) + 1

N0
e−r t . (5)

Example 2.2 For Richards growth, G(N ) = r N (1 − (N/K )α), the choice h(N ) =
1/Nα transforms system (2) into (4) with ν = αr . Consequently, the solution of (2) is

1

Nα(t)
= 1

K α
(1 − e−αr t ) + 1

Nα
0
e−αr t . (6)

Example 2.3 The Gompertz growth model can be viewed as a specific limiting case,
α → 0+, of the Richards growth model. To see this, let r(α) be a function such that
limα→0+ αr(α) = r , where r > 0 is a constant, and then for all N > 0:

lim
α→0+ r(α)N

[
1 −

(
N

K

)α]
= lim

α→0+ α r(α)N
1 − e

α ln
(
N
K

)

α
= − r N ln

(
N

K

)
,

which is the right-hand side in the Gompertz model. For Gompertz growth, the choice
h(N ) = ln(N ) transforms system (2) into (4) with ν = r . Consequently, the solution
of (2) is

ln N (t) = ln K (1 − e−r t ) + ln N0 e
−r t (7)

which may also be expressed as

N (t) = K

(
N0

K

)e−r t

(8)

In particular, this growth curve has faster growth at early times than the exponential,
logistic or Richards model.

2.2 Stochastic population growth models

An important type of stochasticity that can affect a population is due to relatively rare,
episodic disturbances or randomcatastrophes.Examples of catastrophes include severe
storms, meteor impacts, epidemics, forest fires, floods (McMullen 2012), droughts,
infestations, volcanic eruptions and so on. The episodic nature of such disturbances
means that it is natural to model their occurrence times as a Poisson event process
in time, where the parameter λ determines their mean frequency of occurrence. One
can model the resulting mortality by either subtracting a random number from the
population, or by assuming that only a random fraction of the population survives the
disturbance. However, the latter, multiplicative model seems more natural in this case
because it scales with the population size. That is, the mortality in an additive model
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can be larger than the total size of the population.Whether the mortality due to a catas-
trophe is additive ormultiplicative, the resultingmodel becomes a stochastic impulsive
differential equation. The resulting stochastic process for the population size, N (t),
is no longer continuous, but rather piecewise continuous, with jump discontinuities
occurring at the times of catastrophes.

Hanson and Tuckwell (1978, 1981, 1997) appear to be among the earliest to con-
sider population dynamics models that included random catastrophes. In each of their
papers, these authors modeled the disturbance times with a Poisson event process and
modeled the growth between disturbances with deterministic, logistic growth. Their
focus in each paper was on solving for the expected time to extinction (also known
as the persistence time) for a given initial population size x , which they denoted as
T (x). Hanson and Tuckwell (1997) extended their results onmean extinction times via
numerical simulations and asymptotic approximations for both of these prior models
by allowing additive reductions to have an exponential distribution and multiplicative
reductions to have a uniform distribution. For their 1997 Model B, with multiplicative
disturbance factors drawn from a uniform distribution, they were able to give asymp-
totic approximations for T (x). Lande (1993) reviewed and extended prior work on
the relative importance of demographic and environmental stochasticity as well as
random catastrophes; see also Lande et al. (2003). In the analysis of the multiplica-
tive model from Hanson and Tuckwell (1981), a threshold parameter called the long
run growth rate emerges, given by r̃ = r + λ ln(ε), where ε ∈ (0, 1) is the constant
fraction of the population that survives each disturbance. The sign of r̃ was seen to
distinguish between two distinct types of long-term dynamics. We will see that a very
closely related parameter arises in themore general context of the current paper, where
the disturbance factors are allowed to be i.i.d. randomly varying fractions with any
distribution on (0, 1). In the present paper the focus is on general long-term stochas-
tic dynamics and critical thresholds rather than expected extinction times, but these
two sets of results are naturally complementary. In fact, the more general description
of the long-term dynamics helps to explain the asymptotic mean extinction behavior
obtained by Hanson and Tuckwell (1997) for their Model B.

3 Definition of the stochastic model

3.1 Continuous-time model

The stochasticmodel of interest here falls within a general class of piecewise determin-
isticMarkovmodels singled out by Davis (1984), in which a single-species population
undergoes deterministic growth determined by an ordinary differential equation (2),
but which also experiences random, episodic disturbances that remove a random frac-
tion of the population. In this model, net growth is deterministic between consecutive
disturbance events, while the frequency and magnitude of disturbances that lead to
mortality are treated as stochastic. The competition between the population’s net repro-
ductive rate and its mortality rate due to disturbances sets up a situation where critical
thresholds can be computed in terms of model parameters that determine what will
happen to the size of the population in the long term. This model can be expressed as

123

Author's personal copy



Critical thresholds for eventual extinction in…

dN

dt
(t) = G(N (t)), τi ≤ t < τi+1, i = 0, 1, 2, . . . ,

N (τi ) = Di N (τ−
i ), N (0) = N0 > 0, with N0 < K , (9)

where 0 = τ0 < τ1 < τ2 < · · · is the sequence of arrival times of a Poisson renewal
process {�(t) : t ≥ 0} with intensity λ > 0, D0 = 1, and D1,D2, . . . is a sequence
of independent and identically distributed (i.i.d.) disturbance factors on the interval
[0, 1], and independent of the arrival time process.

The disturbance factors determine the fraction of the population that survives a given
disturbance. The functionG is assumed to satisfy the hypothesesmade at the beginning
of Sect 2.1. Our goal is to understand the dynamics of the resulting discrete-time
stochastic process N (τi ), i = 0, 1, 2, . . . , as well as of the continuous-time stochastic
process N (t), t ≥ 0. We will present a number of results for the exponential, logistic,
Richards and Gompertz growth models unified by the Averaging Principle subject to
various scenarios of the random disturbances.

One may note that G(0) = 0 implies that N = 0 is an absorbing state for (9).
In particular the Dirac (point mass) probability distribution δ0 is always an invariant
(equilibrium) distribution for the population. We are interested in conditions under
which this is the only invariant distribution, as well as conditions in which another
invariant distribution also exists on the interval (0, K ).

The theory developed here involves various notions of convergence to a stationary,
or invariant, distribution for populations N (t) indexed either continuously or discretely
by time t ≥ 0, in the limit as t → ∞. From the perspective of applications these can be
viewed as different ways in which to quantify the long time behavior of the population;
we allow here the transformed measure of population size without special notation.

To state these types of convergences, suppose that N (∞) denotes a random variable
having the (possibly transformed) stationary distribution, which may be the Dirac
distribution δ0 at zero in the case of extinction. Then

Definitions
• (Convergence in mean) limt→∞ E |N (t) − EN (∞)| = 0
• (Convergence of means) limt→∞ EN (t) = EN (∞).
• (Convergence in probability) For any ε > 0, limt→∞ P(|N (t)−N (∞)| > ε) = 0.
• (Almost Sure convergence) P({ω ∈ 
 : limt→∞ N (t, ω) = N (∞, ω)}) = 1.
• (Convergence in distribution) For any bounded continuous function g, limt→∞ Eg

(N (t)) = Eg(N (∞)).

The first type of convergence, also referred to as L1—convergence, implies con-
vergence of the expected values and, by Chebyshev inequality, the third type of
convergence in probability as well. The converse is generally not true but, under an
added condition of uniform integrability, convergence in mean and in probability are
in fact equivalent. That is, if in addition limb→∞ supt E(N (t)1[N (t) ≥ b]) = 0, then
convergence in probability implies convergence in mean. Almost sure convergence
implies convergence in probability, but not conversely. Finally, convergence in proba-
bility also implies convergence in distribution and, as would be the case for extinction,
if N (∞) is a sure constant then convergence in distribution implies convergence in
probability. Accordingly, the quantification of the long time behavior of the popula-
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tions is a delicate matter. For example, as will be seen, it is possible to have N (t) → 0
almost surely as t → ∞, while EN (t) remains constant, or even grows, as t → ∞.
That is the expected population sizemay remain constant or grow in time, while almost
every sample realization of population sizes will go to zero. Such distinctions have
obvious importance to management considerations.

3.2 Discrete-time post-disturbance model

In addition to the continuous time model (9), a natural discrete time model is obtained
by considering the population sizes at the sequence of times at which disturbances
occur. That is,

Nn = Dn N (τ−
n ), n = 0, 1, 2, . . . , τ−

0 = 0, D0 = 1, (10)

where Nn is the random size of the population immediately after the nth episodic
disturbance. Here the left-hand limit notation N (τ−

n ) = limt↑τn N (t) is used to capture
the population size just before the nth disturbance.

3.3 Relationship between invariant distributions of the continuous and
discrete-time models

For the continuous time growth models we will take advantage of the existence of a
one-to-one correspondence between the invariant distributions of the (discrete-time)
post-jump Markov chain and the continuous time piecewise deterministic Markov
process originally obtained by Davis (1984) and Costa (1990) in more generality than
required here. In order to keep the present paper self-contained we provide a more
direct derivation in the Appendix for the special disturbance models of interest to the
present paper.

Let’s first recall the overall structure in which we consider a class of deterministic
population models interrupted by i.i.d. random multiplicative disturbances (factors)
D1,D2, . . . at arrival times τ1 = T1, τ2 = T1 + T2, . . . of a Poisson process with
i.i.d. exponentially distributed inter-arrival times T1, T2, . . . with mean 1

λ
. Between

disturbances, the deterministic law of evolution of the population continuously in time
is given by an equation of the general form

dN (t)

dt
= G(N (t)), N (0) = x, (11)

where G satisfies assumptions introduced in Sect. 2.1, and whose solution may be
expressed as

N (t) = g(t, x), t ≥ 0, x > 0,

where the population flows x → g(t, x) are continuous, one-to-one maps with a
continuous inverse, such that g(0, x) = x, and g(s + t, x) = g(t, g(s, x)), s, t ≥
0, x > 0. In particular, the uninterrupted evolutions considered here have unique
solutions at all times for a given initial value.
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A common feature of these models is that x = 0 is a steady state, i.e., g(t, 0) = 0.
This trivial equilibrium persists in the disturbed evolutions as well. Thus we focus on
initial states x > 0 in what follows.

On the other hand, the discrete-time disturbed population model is given by

N0 = x, Nn = Dng(Tn, Nn−1), n = 1, 2, . . . . (12)

The following theorem describes the relationship between steady state distributions
of the continuous and discrete time evolutions. The result follows as a special case
of a much more general theory for piecewise deterministic Markov processes due to
Davis (1984) and Costa (1990); however, as remarked earlier, we sketch a proof (in
the Appendix) that takes advantage of the specific nature of the disturbance model of
interest here.

Theorem 3.1 (Continuous and discrete time invariant distributions)
Let g(t, x) be the flow of the deterministic system (11). Then

(i) Given an invariant distribution π for the discrete time post-disturbance popula-
tion model (12), let Y be a random variable with distribution π , and let T be an
exponentially distributed random variable with parameter λ, independent of Y .
Then the distribution

μ(C) = P(g(T,Y ) ∈ C), C ⊂ (0,∞),

is an invariant distribution for the corresponding continuous time disturbance
model (9).

(ii) Given an invariant distribution μ, for the continuous time disturbance model (9),
let Y be a random variable with distribution μ, and let D1 be distributed as the
random disturbance factor distributed in (0, 1), independent of Y . Then

π(C) = P(D1Y ∈ C), C ⊂ (0,∞),

is an invariant distribution for the corresponding discrete time post-disturbance
model (12).

Proof See Appendix A. 	


4 Exponential growth with episodic disturbances

As a warm-up to the more complex growth models, it is instructive to first consider
random disturbances of purely exponential growth, for which G(x) = r x . Results for
the discrete-time model are followed by results for the continuous-time model.

4.1 Disturbance of exponential growth: discrete-time model

For simple exponential growth, we have N (τ−
n ) = Nn−1 er Tn so that Nn =

Nn−1 er TnDn for the discrete-time model. This can be iterated to obtain

Nn = N0

n∏

k=1

[
er TkDk

]
, (13)
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where N0 is a given initial condition in (0, K ), Tn ≡ τn − τn−1 (n ≥ 1) is the random
time interval between consecutive disturbances, and Dn is the fraction of the popula-
tion that survives the nth disturbance. Since we have assumed that disturbances occur
according to a Poisson process, the random variables Tn, n ≥ 1, are mutually indepen-
dent and exponentially distributed with parameter λ > 0; e.g., see Bhattacharya and
Waymire (1990). The random variable Sn = exp(r Tn) takes values in [1,∞) and has
a Pareto distribution with cumulative distribution function FSn (s) = 1 − s−p, s > 0,
where p := λ/r > 0. Here, E(Sn) = p/(p−1) = (λ/r)/((λ/r)−1) if λ/r > 1 and
is infinite otherwise. Since many of our convergence statements involve expectations
of the natural logarithm of the disturbances, which could be zero, we shall use the
convention throughout this paper that ln 0 = −∞.

Theorem 4.1 (Threshold for almost sure convergence) Let τn be a sequence of arrival
times of a Poisson process with intensity λ > 0, andDn be a sequence of i.i.d. random
disturbance variables on [0, 1] which is independent of the Poisson process. Suppose
that G(N ) = r N for some r > 0. Then

(i) If 0 < r + λE [lnD1] < ∞, then Nn → ∞ a.s. as n → ∞.
(ii) If −∞ ≤ r + λE [lnD1] < 0, then Nn → 0 a.s. as n → ∞.

Proof Taking logarithms in (13) we have

ln (Nn) = ln (N0) +
n∑

k=1

ln(Dk) + r
n∑

k=1

Tk . (14)

Now apply the strong law of large numbers to get

ln (Nn)

n
→ E [lnD1] + r

λ
as n → ∞, a.s.

If the limit is positive then ln(Nn), and therefore Nn is unbounded as n → ∞. If the
limit is negative then ln(Nn) → −∞ and therefore Nn → 0, almost surely. 	


Notice that the critical threshold occurs when the quantity r + λE [lnD1], which
biologically stands for the per capita growth rate + the average (negative) effect of the
disturbance, switches sign. Figure 1 helps to visualize the threshold as a surface in the
state space of themodel that depends on the three parameters r ,λ andη = −E[ln(D1)].
The function I (r, λ, η) = r−λ η is used tomeasure distance from the critical threshold.

The threshold behavior defined by this result is in terms of behavior of sample paths
that occurs with probability one (i.e., almost surely). This implies convergence in dis-
tribution, but is generally stronger than convergence in mean. In view of the following
calculation, a different threshold is obtained for the (weaker) convergence/divergence
behavior of the averages.

Theorem 4.2 (Threshold for convergence in mean) Assume that the conditions of
Theorem 4.1 hold. Then, as n → ∞,
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Fig. 1 Filled contour plot for the indicator function I (r, λ, η) = r − λ η, where η = −E[ln(D1)], for the
special cases a r = 2.0 and b r = 4.0. The threshold condition, I = 0, is shown in each plot as a black
curve, with I < 0 above the curve and I > 0 below the curve. Eventual extinction occurs almost surely
where I < 0. The black curves in a and b should be viewed as slices through a black, hyperbolic surface
that divides the three-parameter state space into two regions where I < 0 and I > 0

E (Nn) →

⎧
⎪⎨

⎪⎩

0, if r + λ(E(D1) − 1) < 0

N0, if r + λ(E(D1) − 1) = 0

∞, if r + λ(E(D1) − 1) > 0

(15)

Proof Observe that

E (Nn) =
{
N0
(
E (D1) E

(
er T1

))n = N0

(
E (D1)

(λ/r)
(λ/r)−1

)n
, if λ/r > 1

∞, if λ/r ≤ 1.

Thus, E(Nn) approaches zero if λ/r > 1 and E(D1)
(λ/r)

(λ/r)−1 < 1, E(Nn) approaches

N0 if λ/r > 1 and E(D1)
(λ/r)

(λ/r)−1 = 1, and E(Nn) approaches infinity otherwise.
These three distinct cases can be re-phrased as in (15). 	

Remark If r + λ(E(D1) − 1) < 0, then r + λE [ln(D1)] < 0. This follows from
ln(x) ≤ (x − 1) for x > 0 and taking expectations. Theorems 4.1 and 4.2 therefore
imply that for the disturbed exponential growth model, if E(Nn) → 0 , then Nn → 0
almost surely, but not conversely.

Theorems 4.1 and 4.2 distinguish between convergence with probability one and
convergence in expectation and they identify two distinct thresholds. In the context of
our model, it makes sense to express these thresholds as a comparison of the intrinsic
per capita growth rate, r , to the other (environmental) model parameters that char-
acterize the magnitude and frequency of episodic disturbances that lead to mortality.
An evolution toward eventual extinction results when the mortality rate due to dis-
turbances overpowers the undisturbed net growth rate, r . The threshold conditions in

123

Author's personal copy



S. D. Peckham et al.

Theorems 4.1 and 4.2 are then r < −λ E[ln(D1)] =: r2 and r < λ(1− E(D1)) =: r1,
respectively, and since r1 ≤ r2, the second inequality implies the first. In the case
where r1 < r < r2, we have Nn → 0 almost surely but E(Nn) → ∞. In particular,
the sure eventual demise of a population would be misinformed by its mean behavior
in such a parameter regime.

Example 4.1 (Uniformly distributed disturbance) Suppose that D1
d∼ Uniform(0, 1).

Then E(D1) = 1/2, E [ln(D1)] = −1 and the two regimes are given by r < λ/2 and
r < λ, respectively. Compare this to Example 5.1.

Example 4.2 (Two-valued distributed disturbance) Suppose that D1 either equals 1
(i.e. no disturbance), or δ for some 0 < δ < 1, both with probability 1/2. Then
E(D1) = (1 + δ)/2, E [ln(D1)] = ln(δ)/2 and the two convergence regimes are
given by

r <
1 − δ

2
λ and r <

− ln δ

2
λ,

respectively. So with δ = 1/4, one regime is r < (3/8)λ ≈ 0.375λ for convergence
of means, while the regime for almost sure convergence is r < (ln 2)λ ≈ 0.693λ.

4.2 Disturbance of exponential growth: continuous-time model

We now highlight some properties for the mean of the disturbed continuous-time
exponential growth model.

Theorem 4.3 Assume that the conditions of Theorem 4.1 hold. Then the solution N (t)
of (9) satsifies:

(i) E[N (t)] = N0 et[r−λ(1−E(D1))].
(ii) E

[
N 2(t)

] = N 2
0 e

2 r t−λ t
[
1−E(D2

1)
]
.

(iii) E [N (t)] → 0 if, and only if, r + λ(E(D1) − 1) < 0.

Proof Let M(t) be the random number of disturbances that occur before time t and
let τ be the time of the last (most recent) disturbance before time t , given by

τ =
M(t)∑

k=1

Tk . (16)

Wecan thenwrite the population size at an arbitrary time, t , in termsof the deterministic
growth that has occurred since the last disturbance event as

N (t) = NM(t) e
r(t−τ). (17)

Here, NM(t) denotes the value of the discrete-time process immediately after the last
disturbance event. Since disturbances follow a Poisson event process, M(t) has a
Poisson distribution with parameter λt . Between time τ and t , the population again
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experiences deterministic, exponential growth. Interestingly, the product of the expo-
nential (deterministic) growth terms contained in NM(t) combine with the one in (17)
to give simply er t . This allows (17) to be written as a product of a random number of
i.i.d. random variables

N (t) = N0 e
r t

M(t)∏

k=1

Dk . (18)

Using conditional probabilities and noting the probability generating function for the
Poisson distribution, one has that

E

⎡

⎣
M(t)∏

k=1

Dk

⎤

⎦ = E

⎧
⎨

⎩

M(t)∏

k=1

E[Dk |M(t)]
⎫
⎬

⎭

= E{(D1))
M(t)}

= e−λ t(1−E(D1)). (19)

Inserting this into (18), we obtain assertion (i). In the long-time limit, the expected
size of the population therefore diverges or converges to 0 depending on whether the
argument of the exponential function is positive or negative, respectively. This is the
same threshold condition that was found for the discrete-time model in Theorem 4.2.
Result (ii) is obtained by the same method after squaring (18). Together, (i) and (ii)
also allow the variance to be computed. 	


5 Logistic growth with episodic disturbances

We now turn to the case of logistic growth, where G(x) = r x(1 − x
K ) in our general

model, (9). It turns out that the reciprocal transform h(N ) = 1/N established in
Example 2.1 provides the key to analyzing the discrete-time model in this case. In
view of the Averaging Principle, we will provide a detailed analysis only for the
logistic growth model, and simply state the corresponding theorems for the Richards
and Gompertz models.

5.1 Disturbance of logistic growth: discrete-time model

Recall that Nn denotes the random size of the population immediately after the nth
episodic disturbance. As a result of Example 2.1 and (10), since Nn−1 becomes the
(new) initial condition for the next disturbance interval, we have

Nn = Dn
1

1
K

(
1 − e−r Tn

)+ 1
Nn−1

e−r Tn
, (n ≥ 1) , (20)

where N0 is given, T1 is the random timeuntil the first disturbance, Tn ≡ τn−τn−1 (n ≥
1) is the random time interval between successive disturbances and Dn is the fraction
of the population that survives the nth disturbance. The case r > 0, K = ∞ is that of
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exponential growth, treated in the previous section. As in that section, we assume that
disturbances occur according to a Poisson process, so the random variables Tn, n ≥ 1,
are mutually independent and exponentially distributed with parameter λ > 0. The
random variable Sn = exp(−r Tn) has the distribution function FSn (s) = s p, where

p = λ/r . That is, Sn
d∼ Beta(p, 1), for s ∈ (0, 1). (Note that in the disturbed

exponential growth model we had Sn = exp(r Tn).) The disturbance factors Dn are
again assumed to be independent and identically distributed, and independent of the
disturbance times.

The recursion (20) can also be written as an iterated random function dynamics
(see Bhattacharya and Majumdar 2007; Schreiber 2012) for extensive theory of such
dynamics),

Nn = γ�(n) ◦ γ�(n−1) ◦ · · · ◦ γ�(1) , (21)

where �(i) =
(
θ

(i)
1 , θ

(i)
2

)
, i ≥ 1, are i.i.d with independent components θ1 ∈ (0, 1)

and θ2
d∼ Exp(λ), and

γ�(x) ≡ γ(θ1,θ2)(x) = θ1
1

1
K

(
1 − e−rθ2

)+ 1
x e

−rθ2
. (22)

While it is difficult to analyze the logistic growth model in terms of Nn directly,
significant progress canbemadeby instead examining its reciprocal, N−1

n . Specifically,
letting Jn = 1/Nn ∈ (1,∞),

Jn = An Jn−1 + Bn, J0 = 1/N0, (23)

where An = Sn/Dn , Bn = (1 − Sn) /KDn and (A1, B1), (A2, B2), …are i.i.d. The
general solution to this linear recurrence relation is given by

Jn = J0

(
n∏

k=1

Ak

)

+
⎛

⎝
n−1∑

j=1

Bj

n∏

i= j+1

Ai

⎞

⎠+ Bn . (24)

We can now establish convergence of the distribution of the stochastic process Nn to
steady state.

Theorem 5.1 (Threshold for convergence in distribution) Let τn be a sequence of
arrival times of a Poisson process with intensity λ > 0, andDn be a sequence of i.i.d.
random disturbance variables on [0, 1] which is independent of the Poisson process.
Suppose that G(N ) = r N (1 − N/K ) for some r > 0 and K > 0. Then

(i) If r + λE [ln(D1)] > 0, then {Nn}∞n=0 converges in distribution to a unique
invariant distribution with support on (0, K ).

(ii) If r + λE [ln(D1)] < 0, then {Nn}∞n=0 converges in distribution to zero.

Moreover, in this latter case, the convergence to δ{0} is exponentially fast in the metric
of convergence in distribution.
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Proof To prove (i), consider the reciprocal dynamics given by (23). According to
Theorem 1 in Brandt (1986), a sufficient condition for the existence of a unique
invariant distribution on the state space (1,∞) is negativity of the parameter

E ln |A1| < 0,

or equivalently,

− E [ln (D1)] − r

λ
< 0,

and the negativity of the parameter

E[ln |B1|]+ < 0, where [x]+ = max(x, 0),

but this follows automatically from the condition in (i). This establishes assertion (i),
since the map x → x−1 of (0, K ) onto ( 1

K ,∞) is continuous with a continuous
inverse.

To prove (ii), we need to obtain uniqueness of the invariant distribution on [0, K ) for
{Nn}. For this we apply the Diaconis and Freedman (1999) condition of “contraction
on average” on the complete metric space [0, K ]. Specifically, in the representation
as i.i.d. iterated random maps (21), one also has

γ ′
�(x) = θ1x

−2 e−rθ2

(
1
K1

(
1 − e−rθ2

)+ 1
x e

−rθ2
)2 ≤ θ1 e

r θ2 . (25)

Thus,
|γ�(x) − γ�(y)| ≤ M� |x − y|

for all 0 ≤ x, y ≤ K , where
M� = θ1 e

r θ2 .

Now, δ{0} is the unique invariant probability on [0, K ] provided that

E [ln (D1)] + r

λ
≡ E [ln (M�)] < 0.

Moreover, a direct application of the theorem of Diaconis and Freedman (1999)
yields the asserted exponential rate of convergence to steady-state distribution. 	

Technical Remarks The model (9) defines a reducible Markov process since states
in (0,∞) are inaccessible from N = 0. The proof above takes advantage of some
special techniques and observations to exploit this reducibility to the benefit of a rather
complete theory for the model (9). Interestingly, owing to a technical condition on
topological completeness of the phase space for application of Diaconis and Freedman
(1999), and the condition of affine linearity to apply Brandt (1986), neither of these is
sufficient for the full set of results given here, but in combination they lead to a rather
complete picture of the long time behavior.
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For an alternative approach to the extinction result given here one may apply The-
orem 3.1(i) of Schreiber (2012). However the exponential rate obtained by use of
Diaconis and Freedman (1999) given here would not follow. In addition, one may also
apply Theorem 3.1 of Schreiber (2012) to obtain a stronger form of persistence that,
together with boundedness, implies the existence of an invariant probability distribu-
tion. This, together with irreducibility on (0, K ], would imply uniqueness as well.

Next we show that there is a different threshold to assure that the reciprocal of the
population converges in mean. This can be significant when parametrizing this model
based on data analysis of averages.

Theorem 5.2 (Convergence in mean of the reciprocal) Assume that the conditions of
Theorem 5.1 holds. Then, as n → ∞,

E

(
1

Nn

)
→
⎧
⎨

⎩

E(D−1
1 )

K
(
1− λ

r (E(D−1
1 )−1)

) , if r > λ(E(D−1
1 ) − 1),

∞, if r ≤ λ(E(D−1
1 ) − 1).

(26)

Proof First, since the Tn are independent and exponentially distributed, there follows
that E(Sn) = E(e−rT1) = λ/(λ + r). Taking expectations in (23), and using the
independence of Jn−1 and An , yields:

E(Jn) = E(A1) E(Jn−1) + E(B1), n ≥ 1, (27)

because the An and Bn are identically distributed. Hence, as n → ∞

E(Jn) →
{

E(B1)
1−E(A1)

, if E(A1) < 1

∞, otherwise

Recalling that A1 = S1D−1
1 , and B1 = (1−S1)K−1D−1

1 , and exploiting independence
of S1 andD−1

1 , a calculation shows that the above limit is finite if r/λ > E(D−1
1 ) − 1

with the limit given in (26), and infinite otherwise. 	

Theorem 5.2 establishes a new threshold for the growth rate r , namely r3 :=

λ
(
E(D−1

1 ) − 1
)
guaranteeing convergenceor divergenceof themeanof the reciprocal

of the population. For future reference, we note that r2 ≤ r3, where r2 = −λE(ln(D1))

was defined before. As before, this follows the fact that ln(x) ≤ x − 1 for all x > 0,
and taking expectations.

Example 5.1 (Uniformly distributed disturbance) This example provides a case where
the invariant distribution of the reciprocal of the population, and of the population
can be given in closed form. For the evolution of the population sizes at successive
disturbances, consider Jn ≡ K/Nn ∈ (1,∞) satisfies the recurrence (23) scaled by
K . An invariant distribution for reciprocal recurrence must be such that Jn+1 and Jn
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have the same distribution, so let J denote a random variable having this distribution.
Then J must satisfy

J
d= A1 J + B1 = S1 (J − 1) + 1

D1
. (28)

It follows that

FJ (z) = P [J ≤ z] = P

[
J ≤

(
zD1 − 1

S1

)
+ 1

]
. (29)

Since the random variablesD1 and S1 are independent, their joint pdf is fS1(s) fD1(x)
and

FJ (z) =
∫ 1

0

∫ 1

0
FJ

(
1 + z x − 1

s

)
fS1(s) fD1(x) ds dx . (30)

Thus (30) provides an integral equation that FJ (z)must satisfy. Since S1 = exp(−r T ),

fS1(s) = p s p−1 (or S1
d∼ Beta(p, 1)), where p = λ/r and s ∈ (0, 1). Also, since

J takes values on (1,∞), FJ [1 + (z x − 1)/s] = 0 for x < 1/z. Given a solution
for FJ (z), we can easily compute the corresponding invariant distribution for N since
P [N ≤ Ku] = P [K/N ≥ 1/u] and therefore

FN (Ku) = 1 − FJ (1/u) . (31)

Changing variables to u = z x in (30), and noting that the first integral is zero from
x = 0 to x = 1/z, we have

FJ (z) =
∫ z

u=1

(
1

z

)
fD1

(
u

z

)∫ 1

s=0
FJ

(
1 + u − 1

s

)
fS1(s) ds du. (32)

Changing variables again to v = 1+(u−1)/s, and using the fact that fS1(s) = p s p−1,
where p = λ/r , we find after simplifying that

z FJ (z) =
∫ z

u=1
fD1

(
u

z

)
(u − 1)p

[∫ ∞

v=u

p FJ (v) dv

(v − 1)p+1

]
du. (33)

Now assume thatD1
d∼ Uniform(0, 1). Then all z-dependence, except from the upper

limit of integration, is removed from the right-hand side. Taking the derivative of both
sides with respect to z twice, we obtain

[
[z FJ (z)]′

(z − 1)p

]′
= −p FJ (z)

(z − 1)p+1 . (34)

Solving this ODE for FJ (z) with the constraints z ≥ 1, FJ (1) = 0 and FJ (∞) = 1,
we find that if 0 < p < 1 (or λ < r ), the cdf for the invariant distribution simplifies to

FJ (z) = B(1, 1 − p, 1 + p) − B( 1z , 1 − p, 1 + p)

B(1, 1 − p, 1 + p) − B(0, 1 − p, 1 + p)
, z ≥ 1 (35)
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where B(z, a, b) is the incomplete Beta function. However, B(0, 1 − p, 1 + p) = 0
for 0 < p < 1. One may check that E(J ) = ∞, which is consistent with (26), since

E(D−1
1 ) = ∞ for D1

d∼ Uniform(0, 1). Finally, since the limiting population size is
given by N = K J−1, we can use (31) to compute the cdf for N as

FN (Ku) = B(u, 1 − p, 1 + p)

B(1, 1 − p, 1 + p)
, 0 ≤ u ≤ 1, (36)

and therefore the pdf of N is given by

fN (v) = C(p, K )
(
1 − v

K

)p ( v

K

)−p
, 0 ≤ v ≤ K , (37)

where C(p, K ) is the normalization constant. In particular the rescaled population N
K

has a Beta distribution on [0, 1] with parameters 1− p and 1+ p, and we previously
required that 0 < p ≤ 1. Recall from Theorem 5.1 that there is a unique, nontrivial
invariant distribution when E[ln(D1)]+1/p > 0 and otherwise N → 0 almost surely.

Since D1
d∼ Uniform(0, 1), E[ln(D1)] = −1 and the first condition is equivalent to

p < 1. Note also that the pdf given by (37) diverges at u = 0 for all p > 0. In addition,

E(N ) = (1 − p)K/2, (38)

Var(N ) = (1 − p2)K 2/12. (39)

5.2 Disturbance of logistic growth: continuous-time model

Since the logistic growthmodel is a special case (α = 1) of theRichards growthmodel,
we postpone analysis of the continuous time logistic growth to the latter analysis where
the general form of the continuous time invariant distribution function for general
disturbance distributions will be given in terms of the corresponding discrete time
invariant distribution. In anticipation of those results, it will follow from Theorem 6.1,
see Example 6.1 for details, that in the case of uniformly distributed disturbances,

i.e., D1
d∼ U (0, 1) as in Example 5.1, and if r

λ
> 1 = −E lnD1, then the invariant

distribution of the rescaled population, N/K associated to the continuous-time model
(9), will have the Beta distribution supported on (0, 1] with parameters (1 − p, 1)
given by

μK (x) = d

dx
μ[0, x] = C2(p)x

−p, x ∈ (0, 1]. (40)

where p = λ/r < 1, C2(p) = 1/B(1 − p, 1) and B(α, β) = ∫ 10 xα−1(1 − x)β−1dx
denotes the Beta normalization constant. In particular,

E(N ) = 1 − p

2 − p
K (41)

Var(N ) = (1 − p)

(2 − p)2(3 − p)
K 2 (42)
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Although in this case, the discrete-time invariant distribution π and μ exist under the
same threshold condition (r/λ > 1 = −E lnD1), and although both are Beta distribu-
tions, the pdf μ differs from that of its discrete-time counterpart (37) in Example 5.1.
This has significant consequences for statistical parameter estimation and calibration
of these models, as can be seen by comparing the moments in (38), (39) and (41),
(42) respectively. For instance, the mean of the invariant distribution for the discrete
time model is a factor of 2−p

2 < 1 of the mean of the continuous time model, and thus
always smaller. As will be shown in Theorem 6.1 in connection with the continuous
time post-disturbance Richard’s model, a general result is possible that displays the
invariant distribution for the continuous time disturbance model as an integral with
respect to the invariant distribution of the discrete-time post disturbance model.

6 Richards and Gompertz growth with episodic disturbances

6.1 Richards growth

The Richards growth model is a generalization of the logistic growth model with an
additional parameter, α > 0. In terms of our general model (9) this model is given
by G(N ) = r N [1 − (N/K )α]. The logistic model is the special case of α = 1.
In particular, as an application of Lemma 2.1, we showed in Example 2.2 that the
transformation h(N ) = 1/Nα , and the assignment ν = αr , transforms the system into
an affine equation, from which follows that the solution N (t) with initial condition
N0 can be written as:

N (t) = 1
(

1
K α

(
1 − e−αr t

)+ 1
Nα
0
e−αr t

) 1
α

. (43)

The discrete-time disturbance model associated with (43) is

Nn = Dn
1

(
1
K α (1 − e−rαTn ) + 1

Nα
n−1

e−rαTn
)1/α , (n ≥ 1) . (44)

The following Theorem summarizes the behavior of the discrete and continuous time
Richards growth models. Since the proof mirrors the corresponding results for the
logistic growth models, it is omitted.

Theorem 6.1 (Threshold for convergence in distribution) Let τn be a sequence of
arrival times of a Poisson process with intensity λ > 0, andDn be a sequence of i.i.d.
random disturbance variables on [0, 1] which is independent of the Poisson process.
Suppose that G(N ) = r N (1 − (N/K )α) for some r > 0, α > 0 and K > 0.

(i) If r + λE [ln(D1)] > 0, then {Nn}∞n=0 converges in distribution to a unique
invariant distribution with support on (0, K ). Moreover, the rescaled continuous
time disturbed Richards model N (t)

K has the invariant cumulative distribution
function
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μK (0, x] =
∫ x

0

(
y−α − x−α

y−α − 1

) λ
αr

πK (dy) 0 ≤ x ≤ 1, (45)

where πK is the (rescaled) invariant distribution for Nn.
(ii) If r +λE [ln(D1)] < 0, then {Nn}∞n=0 converges in distribution to 0. Moreover, in

this case, the convergence to δ{0} is exponentially fast in the metric of convergence
in distribution.

Remark It is noteworthy that the threshold condition for the Richards growth model
does not depend on the parameter α. That said, of course the details of the asymptotic
invariant distribution, when it exists, will depend on α.

Example 6.1 (Continuous-time disturbed logistic model revisited) If one assumes a
uniformly distributed disturbance on [0, 1], hence 1/p = r/λ > 1 = −E lnD1,
and α = 1 yielding logistic growth, then, according to (37), YK has the pdf
Cp (1 − y)p y−p, 0 ≤ y ≤ 1. Thus, the invariant distribution function for the
(rescaled) population in the continuous time Richards growth model is given by

μK [0, x] =
∫ x

0

(
y−1 − x−1

y−1 − 1

)p

Cp(1 − y)p y−p dy

= C ′
p x

1−p, 0 ≤ x ≤ 1, p = λ

r
. (46)

The corresponding pdf, i.e., Beta density with parameters (1 − p, 1) was displayed
earlier at (40).

6.2 Gompertz growth

Recall the solution of the continuous-time Gompertz model, obtained in Example 2.3:

N (t) = K

(
N0

K

)e−r t

,

and the solution of the associated discrete-time disturbance model is

Nn = K

(
Nn−1

K

)e−rTn

Dn (n ≥ 1) .

The behavior of the Gompertz model is as follows; it can be proved in similar fashion
to the logistic growth model:

Theorem 6.2 (Absence of steady state threshold for Gompertz model) Suppose that
G(N ) = −r N ln(N/K ) for some r > 0 and K > 0. Let τn be a sequence of arrival
times of a Poisson process with intensity λ > 0, andDn be a sequence of i.i.d. random
disturbance variables on [0, 1] which is independent of the Poisson process, and such
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that E[ln(− ln(D1))]+ < ∞, where [x]+ = max(0, x). Then {Nn}∞n=0 converges in
distribution to a unique invariant distribution supported on (0, K ).

Remark This result is remarkable compared to the results for disturbed logistic growth
or, more generally, disturbed Richards growth in Theorem 6.1 because here there is
no threshold, and convergence to extinction cannot occur unless one begins with
N (0) = 0. The cause of this phenomenon is that in case of Gompertz growth at
small population levels, the population grows at a super-exponential rate, and the
disturbances occur too infrequently, no matter how strong they are, to counter this.

Example 6.2 (Uniformly distributed disturbance of Gompertz growth) Let Ñ =
limn→∞(Nn/K ) be the normalized population size associated with the invariant dis-
tribution. We can derive an integral equation for the cdf of Ñ using the same approach
as was used to obtain (30), which yields

FÑ (z) =
∫ 1

x=z

∫ ∞

w=1
FÑ

(( z
x

)w)
fW (w) fD(x) dw dx . (47)

Here, W = erT has a Pareto distribution with FW (w) = 1 − w−p, w ≥ 1 and
p = λ/r > 0. As in the example for the logistic growth model, we can change
variables twice (u = z/x and v = uw), to get

FÑ (z)

z
=
∫ z

u=1
fD
( z
u

) lnp(u)

u2

[∫ u

v=0

p FÑ (v) dv

v [ln(v)]p+1

]
du. (48)

If we assume thatD1
d∼ Uniform(0, 1), then the only z-dependence on the right-hand

side is from the upper limit of integration. Taking derivatives of both sizes with respect
to z twice and simplifying, we get the ODE

[
z2

lnp(z)

(
FÑ (z)

z

)′]′
= p FÑ (z)

z [ln(z)]p+1 . (49)

Solving this with the constraints, 0 ≤ z ≤ 1, FÑ (0) = 0 and FÑ (1) = 1, we find that

FÑ (z) = �(1 + p,− ln(z))

�(1 + p)
, z ∈ (0, 1), (50)

where the incomplete Gamma function is used in the numerator. The corresponding
pdf is given by

f Ñ (z) = [− ln(z)]p

�(1 + p)
, z ∈ (0, 1). (51)

Note that this diverges at z = 0 for all p > 0. Unlike Example (5.1) (logistic growth,
with uniform disturbances), where the existence of the invariant distribution was sub-
ject to the threshold condition p < 1, this pdf is defined for all p > 0. The moments
are given by E(Ñ a) = (1 + a)−(1+p), for a > −1.
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7 Simulation results

In order to explore the dynamics of the randomly disturbed logistic growth model in
greater detail, the model was coded in the Python programming language and is avail-
able as open-source code on GitHub at: github.com/peckhams/disturbed_logistic. The
code uses the Python packages numpy (for numerics and random number generators),
matplotlib (for plotting sample paths) and scipy (for the digamma function, to compute
η for the Beta distribution). Note that for the Beta distribution with parameters α and
β,

η = E [− ln(D1)] = ψ(α + β) − ψ(α), (52)

whereψ(x) = �′(x)/�(x) is the digamma function. Themodel simulates the Poisson
event process for the disturbance times and determines themagnitude of multiplicative
disturbance events by drawing from a Beta distribution on [0, 1]. Depending on the
choice of parameters, α and β, the Beta distribution can take on a rich variety of forms
which makes it a flexible choice to use for the distribution of D1. When α = β the
pdf is symmetric, while for α < β and α > β it is skewed toward x = 0 and x = 1,
respectively. The Uniform distribution is given by α = β = 1, and the pdf is U-shaped
when α and β are both less than one. For other parameter settings, the pdf can diverge
at either x = 0 or x = 1.

The three panels on the left side of Fig. 2 show sample paths for parameter settings
where the model is in a persistence regime, and shows the population often close to the
carrying capacity between disturbances. The three panels on the right side of Figure
2 show sample paths for parameter settings that are well within an extinction regime,
and show that despite partially recovering from disturbances a number of times, the
population size drops to zero fairly rapidly for every realization (or sample path). The
six panels in Fig. 3 all show sample paths for the model when the parameter settings
are at the critical threshold.

Figure 4 shows empirical probability density functions (epdf) for the invariant dis-
tribution of the discrete-time model, using a variety of different Beta distributions
for the disturbances. Each epdf was constructed from 10 million disturbances and
the pdfs of the corresponding Beta distributions are shown as insets. Note that the
invariant epdf for the Uniform distribution (a), agrees with the closed-form result
from our example for the case p = 1/2. When disturbances are drawn from a
right triangle distribution with mode at x = 1, the invariant epdf appears to be
symmetric and is zero at 0 and K . All simulations are in a persistence regime
because the epdf would collapse to a delta function at zero if this was not the
case.

Figure 5 shows empirical probability density functions (epdf) for the invariant
distribution of the discrete-time model, for various values of r in the logistic growth
model and a fixed Beta distribution for the disturbances. This figure illustrates the
transition through the persistence regime for increasing values of r , and the effect on
the skewness of the epdf for increasing r -values. The first epdf is for r slightly larger
than r2 and is concentrated near the origin. For r2 < r < r3 = 0.75, the mode of
the epdf is zero and the slope there is negative. For r ≥ r3, the mode of the epdf is
positive and the slope at the origin is positive. As r increases, the epdf switches from
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Fig. 2 Simulations of the randomly disturbed logistic model, all with N0 = 100, r = 1.5, and K = 2000.
A beta distribution with α = 3 and β = 2 was used for the random fractions,Dn , with η = 7/12 = 0.5833.
The figures on the left show persistence cases (I = 1) with λ = 6/7 = 0.857, while those on the right
show extinction cases (I = − 1) with λ = 30/7 = 4.285

left-skewed to right-skewed, being approximately symmetric around x = K/2 = 50
for r = 2.5. As r → ∞, the sequence of epdfs appears to converge to the most
right-skewed curve shown (r = 1000).
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Fig. 3 Simulations of the randomly disturbed logistic model, all with N0 = 100, r = 1.5, K = 2000 and
λ = 18/7 = 2.57. A beta distribution with α = 3 and β = 2 was used for the random fractions, Dn , with
η = 7/12 = 0.5833. This represents the critical threshold value of I (r, λ, μ) = 0

8 Conclusions and open problems

In this paper we have presented the foundations of a general theory for the dynamics
of populations that are episodically disturbed by random catastrophes. We provided a
literature review and showed how our results unify and extend a number of results that
have been obtained previously for these types of models. A key feature of thesemodels
is that many of them exhibit critical thresholds that can be understood as a condition
for which mortality rate due to the frequency and magnitude of episodic disturbances
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Fig. 4 Empirical probability density functions (epdf) for the invariant distribution with disturbances drawn
from a variety of different Beta distributions (plotted as insets). All cases had r = 1.5, λ = 0.75, K = 100,
N0 = 50 and 10 million disturbances. From left to right, top to bottom: a uniform (a = 1, b = 1, I = 0.75,
max = 0.1274), b triangle, right skewed (a = 2, b = 1, I = 1.125, max = 0.0128), c arcsine (a = 1/2,
b = 1/2, I = 0.460, max = 0.4610), d ellipse (a = 3/2, b = 3/2, I = 0.835, max = 0.0497), e parabola
(a = 2, b = 2, I = 0.875, max = 0.0241), f bell shape (a = 4, b = 4, I = 0.930, max = 0.0205), g
triangle, left skewed (a = 1, b = 2, I = 0.375, max = 0.4643), h unnamed (a = 5, b = 1, I = 1.35, max
= 0.0258). Here, I = r − λ η
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Fig. 5 A set of 28 empirical, steady-state pdfs, each obtained from running the discrete model for 10
million disturbance events with a different value of r . The other model parameters are fixed at K = 100,
N0 = 50 and λ = 0.75. Disturbance factors are drawn from a Beta distribution with α = 3 and β = 2. For
these parameters, r1 = 0.3, r2 = 0.4375 and r3 = 0.75. The x-axis starts at − 1 to better show detail at the
origin. For r < r2, the pdf collapses to a delta function at 0, as predicted (not shown). Curves shown are
for r -values of 0.44, 0.445, 0.45, 0.46, 0.47, 0.48, 0.5, 0.52, 0.55, 0.6, 0.65, 0.7, 0.75, 0.77, 0.8, 0.85, 0.9,
1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0, 3.0, 5.0, 10.0 and 1000.0

exceeds the natural, net growth rate of a population. These critical thresholds can be
computed directly in terms of three key model parameters and they mark a bound-
ary between two distinctly different regimes: one where populations persist with a
fluctuating size that is described by an invariant distribution, and another where pop-
ulations become extinct at an exponentially fast rate. However, there is an important
difference between real populations and our “model populations”, and that is that real
populations cannot recover from arbitrarily small sizes or biomass. It can be shown
in our models that the population size, N (t), will reach values arbitrarily close to
zero repeatedly, even when the model is on the “good side” of the critical threshold,
although this occurs with a very small probability. While such events would result in
extinction for a real population, the model population can recover from an arbitrarily
small, positive size. Despite this fact, even real populations will experience distinctly
different dynamics on either side of the critical threshold, and this was a key point in
the work of Hanson and Tuckwell. Their model included an effective extinction level,
� > 0, to capture this aspect of real populations, and they gave asymptotic results for
the limit of K/� → ∞. They also showed that the distribution of persistence time on
either side of the threshold is completely different, with very long expected persistence
times (e.g. measured in millions of years) on one side and exponentially fast extinction
on the other side. Although our results do not specifically address the distribution of
persistence time, we obtain exponentially fast convergence to extinction beyond the
critical threshold for the general class of models analyzed in the paper.
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Table 1 Convergence results for the disturbed growth models

0 < r < r1 r1 < r < r2 r2 < r < r3 r3 < r

Exponential

E(Nn) → 0 E(Nn) → ∞ E(Nn) → ∞ E(Nn) → ∞
Nn → 0, a.s. Nn → 0, a.s. Nn → ∞, a.s. Nn → ∞, a.s.

Logistic

Nn → 0 (a.s.) Nn → 0 (a.s.) Nn → invar (dist.) Nn → invar (dist.)

E(N−1
n ) → ∞ E(N−1

n ) → ∞ E(N−1
n ) → ∞ E(N−1

n ) → c > 0

Gompertz

Nn → invar (dist.) Nn → invar (dist.) Nn → invar (dist.) Nn → invar (dist.)

The word invar indicates convergence in distribution to an invariant distribution with support on (0, K )

Besides providing several specific examples for the exponential, logistic, Richards
and Gompertz growth laws—for which critical thresholds as well as invariant distri-
butions were computed in closed form—our results extend existing theory in various
directions. We offered a new perspective on deterministic growth laws that shows how
they can be represented as a continuous-time weighted average of an appropriately
transformed (or measured) initial population size and a similarly transformed carrying
capacity. We also distinguished between continuous-time and discrete-time versions
of these models and showed how their invariant distributions are different but related;
this result has important, practical implications for statistical inference and estimation
of parameters. In addition, we illustrated how different types of convergence are char-
acterized by different critical thresholds, including convergence of sample realizations
(almost sure convergence), convergence in distribution and convergence of means.

A summary of threshold regimes are displayed in Table 1, where the thresholds
are expressed in terms of critical values of the intrinsic growth rate, r . In Table 1,
r1 ≤ r2 ≤ r3, where

r1 = λ(1 − E(D1)), (53)

r2 = −λE [ln(D1)] , (54)

r3 = λ(E(D−1
1 ) − 1). (55)

The constant c equals E(D−1
1 )/K

(
1 − λ

r (E(D−1
1 ) − 1)

)
, and appeared in Theorem

4.2. Recall that for disturbed Gompertz growth, there is no critical threshold.
Our results also demonstrate the potential for populations to move closer to critical

thresholds if key parameters change over time, thereby putting populations at risk of
extinction that were not previously at risk. For example, climate change is expected
to lead to an increase in the frequency and severity of disturbances (e.g. storms, fires,
floods, droughts, infestations) and could also lead to a decrease in the net reproductive
rate of various populations (e.g. due to water, food or habitat shortages or difficulty
in finding mates). Effects that increase the disturbance frequency, λ, or severity, as
measured by η = −E[ln(D1)], or that decrease the per capita growth rate, r , can
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all be seen to move populations closer to the threshold for extinction. In fact, one
could potentially estimate these parameters from population and climate data and
then use the difference, I = r + λ E[ln(D1)] to measure or monitor the “distance” of
a given population from the threshold. This could be used to help identify the most
endangered populations, and perhaps suggest actions that would modify the values of
the key parameters enough to reduce the risk of extinction.

Acknowledgements Wewould like to thank theAssociate Editor and oneReviewer formaking suggestions
that have significantly improved an earlier draft of this paper. Funding was provided by National Science
Foundation (Grant Nos. DMS-1411853, DMS-1408947).

9 Appendix A: Proof of Theorem 3.1

The continuous time evolution can be expressed in terms of the semigroup of linear
contraction operators defined by

T (t) f (x) = Ex f (N (t)), t ≥ 0, x > 0,

via its infinitesimal generator given by

L f (x) = T ′(0) f (x) = d

dt
f (g(t, x))|t=0 + λ{E f (D1x) − f (x)}.

To derive this simply observe that up to o(t) error as t ↓ 0, either one or no disturbance
will occur in the time interval [0, t). Thus

T (t) f (x) − f (x)

t
= f (g(t, x))e−λt − f (x)

t

+ 1

t

∫ t

0
E ( f (D1g(s, x))) λe−λsds + o(t).

The first term is, by the product differentiation rule,

f (g(t, x))e−λt − f (g(0, x))e−λ0

t
→ d

dt
f (g(t, x))e−λt |t=0

= d

dt
f (g(t, x))|t=0 − λ f (x).

The second term is λE f (D1x) in the limit as t ↓ 0.
If μ is an invariant probability distribution for this continuous time evolution then

one has essentially from the Fokker–Planck equation L∗μ = d
dt μ = 0 for the adjoint

operator, e.g., see Bhattacharya and Waymire (1990). In particular, for f belonging
to the domain of L as an (unbounded) operator on L2(μ),

0 =< f, L∗μ >=< L f, μ >=
∫ ∞

0
L f (x)μ(dx), f ∈ L2(μ).
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In the case of the discrete time evolution, the one-step transition operator is defined
by

M f (x) = E f (D1g(T1, x)), x > 0.

The condition for π to be an invariant probability distribution for the discrete time
evolution is that for integrable functions f ,

∫ ∞

0
M f (x)π(dx) =

∫ ∞

0
f (x)π(dx).

In particular, it suffices to consider indicator functions f = 1C ,C ⊂ (0,∞), in which
case one has

∫ ∞

0
P(D1g(T, x) ∈ C) π(dx) = π(C).

These are the essential calculations required for the proof.
Let’s begin with part (i). First note from the definition of μ that

∫ ∞

0
L f (x)μ(dx) =

∫ ∞

0

∫ ∞

0
L f (g(t, y))λe−λt dt π(dy).

Now, in view of the above calculation of L , one has

∫ ∞

0
L f (g(t, y))λe−λt dt

=
∫ ∞

0

(
∂ f (g(t, x))

∂t
+ λ [E f (D1g(t, x)) − f (g(t, x))]

)
λe−λt dt.

After an integration by parts this yields

∫ ∞

0
L f (g(t, y))λe−λt dt = λ{E f (D1g(T, x)) − f (x)}

Thus, using this and the invariance of π for the discrete process, one has

∫ ∞

0
L f (x)μ(dx) = λ

∫ ∞

0
{E f (D1g(T, x)) − f (x)}π(dx) = 0.

This proves part (i).
To prove part (ii), first apply L to the function x → P(D1g(T, x) ∈ C). First note

from the composition property and an indicated change of variable,

P(D1g(T, x) ∈ C) = P(D1g(T + t, x) ∈ C) = eλt
∫ ∞

t
P(D1g(s, x) ∈ C)λe−λsds.
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In particular the first term of LP(D1g(T, x) ∈ C) is

d

dt
P(D1g(T, x) ∈ C)|t=0 = λ{P(D1g(T + t, x) ∈ C) − P(D1x ∈ C)}.

Adding this to the second term yields,

LP(D1g(T, x) ∈ C) = λ

{∫ ∞

0
P(D1g(T, y) ∈ C)P(D1x ∈ dy) − P(D1x ∈ C)

}
.

Integrating with respect to the continuous time invariant distribution μ yields

0 = λ

∫ ∞

0

{∫ ∞

0
P(D1g(T1, y) ∈ C)P(D1x ∈ dy) − P(D1x ∈ C)

}
μ(dx),

or equivalently,

∫ ∞

0

∫ ∞

0
P(D1g(T, y) ∈ C)P(D1x ∈ dy)μ(dx) =

∫ ∞

0
P(D1x ∈ C)μ(dx).

But since by definition π(dy) = ∫∞
0 P(D1x ∈ dy)μ(dx), this is precisely the condi-

tion

∫ ∞

0
P(D1g(T, y) ∈ C)π(dy) = π(C),

i.e., that π is an invariant probability for the discrete time distribution. 	
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