S1 Appendix: Prootf of Theorem 1

The model is:
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By scaling the state variables of system (1) — (5) as follows:
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and introducing the rescaled functions
gle,s) = G(re,s)
flp) = F(P),
we obtain the following scaled model:
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Notice that H1, which holds for the rate functions G(E,S) and F(P), is also
valid for the scaled rate functions g(e, s) and f(p).
The total mass of this scaled model,

m=s+p+e+r + 2,

satisfies a linear equation:

dm

—(8) = DB)(S°(t) = m), (11)

which is easily verified by adding all the equations of the scaled model. This equa-
tion, and the upper bound for S°(¢) in H2 imply that the following family of compact
sets

Q. ={(s,p,e,71,22) |5 >0,p>0,e > 0,21 > 0,25 >0,m < S°+ ¢},

are forward invariant sets of the scaled model, for all € > 0.
The Main Result, Theorem 1, is an immediate Corollary of the following result,
which is the tragedy of the commons for the scaled model:

Theorem 1. Assume that H1 and H2 hold, and assume that the initial condition
of (6) — (10) is such that x2(0) > 0; that is, the cheater is present initially. Then
(p(t),e(t), z1(t), xz2(t)) — (0,0,0,0) as t — oo.

Proof
Given the initial condition, we can find an € > 0 such that the solution (s(t), p(t), e(t), z1(t), z2(t))
is contained in the compact set (). for all £ > 0. We shall present two proofs. The
first involves a (biologically nontrivial) transformation of one of the system’s vari-
ables. The second considers the ratio of cooperators and cheaters, a biologically
natural measure, and reveals that this ratio does not increase.

Proof 1: Consider the variable y, = 23. Then

dys

o (t) = yalaf(p) — ¢D(t))

Equation (9), and the above equation can be integrated:

() = 21(0) olo af(p(r)=D(r)dr
y2(t) = 12(0) elo k() —aD()dr 0, for all ¢ since y(0) = 24(0) > 0,

Dividing the first by the second equation yields:
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z1(0 o~ (1=a) Jy D(7)dr Bxl_(O) e~ (1-a)Dt
2(0 — (0)

where we have used the lower bound for D(t), see H2, to establish the last in-
equality, and the positive bound B for y,(¢) which exists because the solution, and
therefore also x4(t), is bounded. From this follows that lim; o, 21 (t) = 0, where the

21(t) = (1)
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Next we consider the dynamics of the variable z = Qx; — e, where Q = (1 — q)/¢:

convergence is at least exponential with rate (1 — ¢)D

z2=—-D(t)z,

which is solvable, yielding () = z(0) e~ Jo P47 The lower bound D for D(t) in
H2, then implies that z(¢) — 0 at a rate which is at least exponential with rate D.
This fact, together with the convergence of x(t) to zero established above, implies
that e(t) — 0 as well.

Next, consider the p-equation (7). There holds that for each € > 0:

—(t) < é— Dp, for all sufficiently large ¢.

Notice that we used that g(0,s) = 0 for all s > 0, and the continuity of g, see H1,
as well as H2 for the lower bound of D(t). It follows that lim sup,_, . p(t) < é/D,
and since € > 0 was arbitrary, there follows that p(t) — 0.

Finally, we consider the zs-equation (10). Since p(¢) — 0 and f(0) = 0 by H1, there
holds that f(p(t)) < D/2 for all ¢ sufficiently large. Consequently,

d D
%(t) < 5% for all sufficiently large ¢,

and thus z5(t) — 0, concluding the proof in this case.

Proof 2: Equations (9) and (10) can be integrated:

zi(t) = 2,(0) oJo af (p())=D(r)dr (12)
xo(t) = x2(0) elo () =Dir)dr 0, for all ¢ since x2(0) > 0. (13)

Thus, the ratio r(t) = z1(t)/x2(t) is well-defined and satisfies the differential equa-
tion:

T =-0-arr

which shows that the ratio does not increase. The solution of this equation is:
r(t) = r(0)e (-9 Jo f(p(r))dr (14)

We distinguish two cases depending on the integrability of the function f(p(t)):
Case 1: [° f(p(r))dr = .
It follows from (14) that r(¢) — 0, and hence also x1(t) — 0 because zy(t) is
bounded. Proof of convergence of e(t),p(t) and z5(t) to zero now proceeds as in
Proof 1.
Case 2: [;° f(p(7))dr < .
It follows from (12)—(13) that both z;(t) — 0 and x4(t) — 0, because 0 < D < D(t)
for all ¢, by H2. Proof of convergence of e(t) and p(t) to zero now proceeds as in
Proof 1 as well.



