S2 Appendix: More general digestion networks

To see why the tragedy continues to hold for more general digestion network, we consider solutions of system the following system:

$$\frac{ds}{dt}(t) = D(t)(S^{0}(t) - s) - k_{1}es + k_{-1}c$$
(1)

$$\frac{dp}{dt}(t) = k_2c - (x_1 + x_2) f(p) - D(t)p$$
 (2)

$$\frac{de}{dt}(t) = (1-q)x_1f(p) - k_1es + k_{-1}c + k_2c - D(t)e$$
(3)

$$\frac{dc}{dt}(t) = k_1 es - k_{-1} c - k_2 c - D(t)c \tag{4}$$

$$\frac{dx_1}{dt}(t) = x_1 \left(qf(p) - D(t) \right) \tag{5}$$

$$\frac{dx_2}{dt}(t) = x_2 \left(f(p) - D(t) \right), \tag{6}$$

for which it is easily verified that the variable:

$$m = s + p + e + 2c + x_1 + x_2$$

still satisfies equation

$$\frac{dm}{dt}(t) = D(t)(S^0(t) - m),\tag{7}$$

implying that the family of compact sets Ω_{ϵ} , defined earlier, is forward invariant for system (1) - (6), for all $\epsilon \geq 0$, when **H2** holds. Consequently, the proof of Theorem 1 in S4 remains valid for the above chemostat model (1) - (6). Indeed, the first proof only crucially depends on the dynamics of x_1 and x_2 to show that $x_1(t)$ converges to zero, after which the convergence of e, p and x_2 is obtained by elementary comparison arguments. For the digestion network presented here, the dynamics of x_1 and x_2 remain unchanged, hence we can still conclude that $x_1(t)$ converges to zero. After that, it follows from a comparison argument that e + c converges to zero, and then similarly that p and x_2 converge to zero as well. One could also easily adapt the steps of the second proof to obtain the same conclusion.