
S3 Appendix: Proof of Theorem 2

The model is:

dS

dt
(t) = D(S0 − S)− EG(S) (1)

dP

dt
(t) = EG(S)− 1

γ
X1F (P )−DP (2)

dE

dt
(t) = (1− q)X1F (P )−DE (3)

dX1

dt
(t) = X1 (qF (P )−D) (4)

By scaling the state variables of system (1)− (4) in the usual way as follows:

s = S

p = P

e =
E

γ

x1 =
X1

γ
,

and switching to lower case letters for the rate functions:

g(s) := G(S)

f(p) := F (P ),

and for the chemostat’s constant operating parameters:

d := D

s0 := S0,

we obtain the following scaled model:

ds

dt
(t) = d(s0 − s)− eg(s) (5)

dp

dt
(t) = eg(s)− x1f(p)− dp (6)

de

dt
(t) = (1− q)x1f(p)− de (7)

dx1
dt

(t) = x1 (qf(p)− d) (8)
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Notice that H1’, which holds for the rate functions G(S) and F (P ), is also valid for
the rate functions g(s) and f(p).

We introduce two new variables:

m = s+ p+ e+ x1 (9)

v = e−Qx1, where Q :=
1− q
q

(10)

and choose to drop the s and e-equations from system (5)− (8), transforming it to:

dm

dt
(t) = d(s0 −m) (11)

dv

dt
(t) = −dv (12)

dp

dt
(t) = (v +Qx1)g(m− p− v − x1/q)− xf(p)− dp (13)

dx1
dt

(t) = x1 (qf(p)− d) (14)

with state space {p, x1 ≥ 0 : m ≥ p+ v + x1/q, v +Qx1 ≥ 0}, which is forward in-
variant. The variables m(t) and v(t) converge exponentially to s0 and 0 respectively,
hence it is natural to study the limiting system:

dp

dt
(t) = Qx1g(s0 − p− x1/q)− x1f(p)− dp (15)

dx1
dt

(t) = x1(qf(p)− d) (16)

which is defined on the state space {p, x1 ≥ 0 : p + x1/q ≤ s0}, which is forward
invariant. It turns out to be more convenient to transform this system using the
variable:

w = p+
1

q
x1, (17)

instead of the variable p, yielding:

dw

dt
(t) = Qx1g(s0 − w)− dw (18)

dx1
dt

(t) = x1(qf(w − x1/q)− d) (19)

with state space Ωred = {x1 ≥ 0 : x1/q ≤ w ≤ s0}, which is forward invariant.
We start our analysis of system (18) − (19) by determining the nullclines. The

w-nullcline is given by:

x1 = h(w), where h(w) =
d

Q

w

g(s0 − w)
. (20)

The main properties of the function h(w) : [0, s0)→ R+ are:

1. h(0) = 0, and limw→s0 h(w) =∞.

2. h′(w) = d
Q

g(s0−w)+wg′(s0−w)
g2(s0−w)

> 0, by H1’.
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3. h′′(w) = d
Q

−wg′′(s0−w)g2(s0−w)+2g(s0−w)g′(s0−w)(g(s0−w)+wg′(s0−w))
g4(s0−w)

> 0, by H1′.

Thus, the function h(w) is zero at zero, is increasing with a vertical asymptote at
w = s0, and it is strictly convex.

To obtain a nontrivial x1-nullcline in the state space, we make one more assump-
tion, namely:

p∗ := f−1
(
d

q

)
satisfies p∗ < s0. (21)

This assumption merely expresses that the cooperator has a break-even steady state
concentration for the processed nutrient at a level below the input nutrient concen-
tration s0, see equation (8). In addition to the horizontal axis x1 = 0, there is a
nontrivial x1-nullcline which is particularly easy to express using p∗, as the graph of
a linear function:

x1 = q(w − p∗). (22)

Any nonzero steady states of the limiting system are given by the intersection of
the w- and the nontrivial x1-nullcine, which are determined by the solutions of the
equation:

h(w) = q(w − p∗), 0 ≤ w < s0. (23)

In view of the convexity of the function h, there are either no, one, or two solutions
to (23), and generically there are none, or two. We will construct the phase portrait
of the limiting system in these two cases.
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Figure 1: Phase plane of the limiting system (18)−(19) in case there are two nonzero
steady states.
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Lemma 1. Suppose that H1’ and (21) hold.

1. If equation (23) has no solutions, then system (18)− (19) has a unique steady
state (0, 0) which is globally asymptotically stable with respect to initial condi-
tions in Ωred.

2. If equation (23) has two solutions w1 < w2, then system (18) − (19) has 3
steady states, (0, 0), (w1, h(w1)) and (w2, h(w2)). The steady states (0, 0) and
(w2, h(w2)) are locally asymptotically stable, and (w1, h(w1)) is a saddle with
one-dimensional stable manifold Ws, and one-dimensional unstable manifold
Wu. The stable manifold Ws intersects the boundary of Ωred in two points,
one on the boundary x1 = qw, the other on the boundary w = s0, forming
a separatrix: Initial conditions below Ws give rise to solutions converging to
(0, 0), whereas initial conditions above Ws give rise to solutions converging to
(w2, h(w2)), yielding bistability in the limiting system, see Fig 1.

Proof

1. If (23) has no solutions, then the w-nullcline and the nontrivial x1-nullcline
do not intersect, and thus (0, 0) is the only steady state of the system. The
state space Ωred is divided in 3 parts by the two nullclines, and it is easy to see
that the region enclosed between both nullclines and the boundary of Ωred is a
trapping region in which solutions monotonically converge to the zero steady
state. Solutions starting in the region above the w-nullcline are monotonically
decreasing (increasing) in the x1-component (w-component), but since that
region does not contain nontrivial steady states, these solutions must enter the
trapping region between both nullclines. Similarly, solutions that start below
the x1-nullcline are monotonically increasing (decreasing) in the x1-component
(w-component), and must enter the trapping region as well. This concludes
the proof of the assertion that (0, 0) is a globally asymptotically stable steady
state.

2. If equation (23) has two solutions w1 < w2, then the nullclines intersect in two
distinct points, yielding the positive steady states (w1, h(w1)) and (w2, h(w2)),
see Fig 1. The third steady state is (0, 0). It is not hard to see that the state
space is now divided into 5 parts, 3 of which are trapping regions. Each of
these trapping regions is enclosed by arcs of the nullclines or segments of the
boundary of Ωred which either connect pairs of steady states, or a steady state
and a point on the boundary of the state space Ωred, see Fig 1. There are
also 2 remaining regions, which we call the NW and SE regions, for obvious
reasons.

To complete the phase plane analysis, we perform a linearization of the system
at the steady states. The Jacobian matrix of the limiting system is(

−Qx1g′(s0 − w)− d Qg(s0 − w)
x1qf

′(w − x1/q) (qf(w − x1/q)− d)− x1f ′(w − x1/q)

)
We focus on the middle steady state (w1, h(w1)), where the Jacobian evaluates
to:

J1 =

(
−d
(

w1g′(s0−w1)
g(s0−w1)

+ 1
)

Qg(s0 − w)
d
Q
q w1

g(s0−w1)
f ′(p∗) − d

Q
w1

g(s0−w1)
f ′(p∗)

)
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Clearly, the trace is negative, and the determinant is given by:

d

Q

w1

g(s0 − w1)
f ′(p∗)

[
d

(
w1g

′(s0 − w1)

g(s0 − w1)
+ 1

)
− qQg(s0 − w1)

]
We claim that this determinant is negative, which implies that this steady
state is a saddle. This follows from the fact that the slope of the tangent line
to the graph of the convex function h(w) at w = w1 must be smaller than the
slope of the line x1 = q(w − p∗), which is of course q:

h′(w1) < q.

Recalling the derivative of h(w) given above, it can be shown that this lat-
ter inequality is equivalent to the expression in the square brackets in the
determinant being negative, which establishes the claim.

Incidentally, a similar argument can be used to show that the determinant of
the linearization at the steady state (w2, h(w2)) is positive, because in this case
h′(w2) > q. Since the trace of that linearization is also negative, this shows
that (w2, h(w2)) is locally asymptotically stable. The linearization at (0, 0)
is triangular with both diagonal entries equal to −d, from which also follows
that (0, 0) is locally asymptotically stable.

Now we turn to the question of the location of the one-dimensional stable
and unstable manifolds Ws, respectively Wu, of the saddle. Therefore, we
determine the eigenvectors of the negative eigenvalue λ1, and the positive
eigenvalue λ2 of the Jacobian matrix J1. We have that

J1

(
1
r1

)
= λ1

(
1
r1

)
with λ1 < 0, and J1

(
1
r2

)
= λ2

(
1
r2

)
, with λ2 > 0,

where we wish to determine, or at least estimate, r1 and r2. We can find r1
by considering the first of the two equations determining λ1:

r1 =
1

g(s0 − w)

(
λ1 + d

(
w1g

′(s0 − w1)

g(s0 − w1)
+ 1

))
.

We claim that r1 < 0. Indeed, since the trace of J1 (which equals λ1 +
λ2) is less than the top-left entry of J1, it follows that the expression in the
large parentheses is less than −λ2, which is negative. This implies that near
(w1, h(w1)), the stable manifold has a branch in the NW, and another branch
in the SE region. Backward integration of solutions starting near the saddle
and on Ws in these regions, shows that they must either exit these regions
along the boundary of Ωred (because backward-time solutions cannot exit via
the trapping regions), or they must converge to a steady state. However, there
are no steady states to the NW of the saddle in the NW region, nor to the SE
of the saddle in the SE region. Thus, the stable manifold Ws must intersect
the boundary of Ωred in two points, one on the line x1 = qw, and the other on
the line w = s0. Next, we focus on the location of the unstable manifold Wu

of the saddle, whose location is determined by r2. We claim that:

h′(w1) < r2 < q.
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To see this we consider the first equation in the eigenvalue equation for λ2,
by solving for r2, once again recalling the expression of the derivative of the
function h:

r2 =
λ2

Qg(s0 − w1)
+ h′(w1),

from which the first inequality follows because λ2 > 0. The second equation
in the eigenvalue equation yields that:

r2 = q
h(w1)f

′(p∗)

h(w1)f ′(p∗) + λ2
,

and again, since λ2 > 0, we find that the second inequality holds, as claimed.

We can now fully assemble the phase portrait presented in Fig 1. The stable
manifold Ws of the saddle has a branch in the first and second trapping regions.
Solutions starting on these branches must converge to (0, 0), and (w2, h(w2))
respectively. In fact, it is not hard to see that all solutions in the first trapping
region converge to (0, 0), whereas solutions in the second and third trapping
region converge to (w2, h(w2)). The fate of solutions starting in the NW and
SE regions depends on their initial location relative to the separatrix Ws: They
converge to (0, 0) if they start below Ws, but to (w2, h(w2)) if they start above
Ws, and this occurs because they must enter one of the trapping regions first.

The asymptotic behavior of the solutions of system (18) − (19) described in
Lemma 1 can be translated into the asymptotic behavior of the solutions of sys-
tem (15)− (16), and combining this with the theory of asymptotically autonomous
systems, see Appendix F in [1], the asymptotic behavior of the transformed system
(11) − (14) can be obtained as well. In turn, this determines the behavior of the
scaled system (5)− (8), from which Theorem 2 follows immediately.
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