Def: A space X is universal for a class of spaces C if $X \in C$ and if each element of C is homeomorphic to a subspace of X.

Thm: The spaces $\prod_{i=1}^{\infty} \{0,1\}$ and $\prod_{i=1}^{\infty} Z_+$ are universal spaces for the class of zero-dimensional spaces.

Lemma: The Cantor set is homeomorphic to $\prod_{i=1}^{\infty} \{0,1\}$ and the space of irrationals is homeomorphic to $\prod_{i=1}^{\infty} Z_{+\cdot}$

Cor: The Cantor set and the space of irrationals are universal spaces or the class of zero-dimensional spaces. Steps in showing $\prod_{i=1}^\infty \mathbf{Z}_+ \cong \mathbf{R} - \mathbf{Q} = \mathbf{P}$:

(Exercise)

- Def: A space is completely metrizable if it has an equivalent metric that is complete.
- Closed subspaces and countable products of completely metrizable spaces are completely metrizable.
- G_{δ} subspaces of completely metrizable spaces are completely metrizable.
- $\bullet P$ is completely metrizable.
- \forall metric ρ on P, $\forall \epsilon > 0$, and for every nonempty open subset U of P, \exists a sequence F_1, F_2, \ldots of pairwise disjoint clopen subsets whose union is U and whose diameters are $< \epsilon$
- Use the previous step to associate with each $x \in P$ a sequence of natural numbers and show that this association is a \cong .

14

13

Compactification Thm: Every zero dimensional space X has a zero dimensional compactification X'.

Embedding Thm: Every zero dimensional space X is homeomorphic to a subspace of $R = R^{2 \cdot 0+1}$.

Types of Disconnectedness

Consider the following properties:

- (1) X is totally disconnected, i.e. the components of X are single points.
- (2) Any two points in X can be separated by the empty set.
- (3) Any point in X can be separated from a closed set not containing it by the empty set (i.e. X is zero dimensional).
- (4) Any two disjoint closed sets in X can be separated by the empty set.

We have: $4 \iff 3 \Rightarrow 2 \Rightarrow 1$.

Lemma: If X is compact, $3 \iff 2$

Lemma: If X is compact, $p \in X$ and M(p) is the set of points which cannot be separated from p by the empty set, then M(p) is connected.

16

Lemma: If X is compact, $2 \iff 1$

Thm: If X is compact, then zero dimensionality is equivalent to total disconnectedness, i.e., all four properties listed previously are equivalent.

Example: There is a one dimensional space that is totally disconnected.

Exercise:

C = Cantor set. Let Q be the endpoints of removed intervals in C and let P be the remaining points.

For each $x \in Q$, let L_x be the set of points on the segment joining x to $\mathbf{c} = (1/2, 1)$ with rational second coordinate. For each $x \in P$, let L_x be the set of points on the segment joining x to \mathbf{c} with irrational second coordinate.

Let T be the union of the L_x .

Claim: T is connected, so not zero dimensional.

So T - c is not zero dimensional. T - c is totally disconnected.

18