Mth 676 - Outline of Results:

All spaces under consideration are separable metric.

Def.

\bullet ind $(X)=-1$ iff $X=\emptyset$

- ind $(X) \leq n$ if $\forall x$ and for each nbhd V of x, there is a nbhd
U of x with $U \subset V$ and with $\operatorname{ind}(B d(U)) \leq n-1$
- ind $(X)=n$ if $\operatorname{ind}(X) \leq n$ and $\operatorname{ind}(X)>n-1$
- $\operatorname{ind}(X)=\infty$ if ind $(X)>n$ for all n.

Theorem: \forall subspace M of $\mathrm{X}, \operatorname{ind}(M) \leq \operatorname{ind}(X)$

Def. L is a partition between disjoint subspaces A and B of X if

Theorem: X satisfies the $\operatorname{ind}(X) \leq n$ iff $\forall x \in X$ and for each closed B with $x \notin B$, there exists a partition L between $\{x\}$ and B with ind $(L) \leq n-1$.

Thm. $\operatorname{ind}(X) \leq n$ iff X has a countable basis $\left\{U_{i}\right\}$ with $\operatorname{ind}\left(B d\left(U_{i}\right)\right) \leq n-1$ for each i.

Dimension Zero

Thm: $\operatorname{ind}(X)=0$
iff $X \neq \emptyset$ and for each x in X and nbhd V of x there exists a clopen U with $x \in U \subset V$
iff X has a countable basis consisting of clopen sets
iff for each $x \in X$ and closed set B not containing x, the empty set is a partition between $\{x\}$ and B.

Thm: Every non empty subspace of a space X with $\operatorname{ind}(X)=0$ has ind $=0$.

Thm: The first separation theorem for dimension 0. If X is a zero-dimensional pace, then for every pair A, B of disjoint closed subsets of X the empty set is a partition between A and B.

Recall, for each pair of separated sets A and B in X, there are disjoint open sets U and V with $A \subset U$ and $B \subset V$.
Lemma: Let M be a subspace X and A, B a pair of disjoint closed subsets of X . Let V_{1}, V_{2} be disjoint opens subsets containing A and B respectivly, with disjoint closures. For every partition L^{\prime} in the space M between $M \cap \overline{V_{1}}$ and $M \cap \overline{V_{2}}$, there exists a partition L in X between A and B with $M \cap L \subset L^{\prime}$

If M is closed, For every partition L^{\prime} in the space M between $M \cap A$ and $M \cap B$, there exists a partition L in X between A and B with $M \cap L \subset L^{\prime}$

Thm: Second Separation Theorem for Dimension Zero. If Z is a zero-dimensional subspace of X , then for each pair of disjoint closed subsets A and B if X there exists a partition L between A and b with $L \cap Z=\emptyset$.	Cor: A subspace M of X has $\operatorname{ind}(M)=0$ iff for each $x \in M$ and each nbhd V of x in X there is an open $U \subset X, x \in U$, with $\operatorname{Bd}(U) \cap M=\emptyset$ iff X has a ctble basis $\left\{U_{i}\right\}$ with $\operatorname{bd}\left(U_{i}\right) \cap M=\emptyset$ for each i.

Thm: Enlargement Thm for Dimension Zero For each zero dimensional $Z \subset X$ there is a G_{δ} set $Z_{*} \subset X$ with $Z \subset Z_{*}$ and $\operatorname{ind}\left(Z_{*}\right)=0$.

Thm: Sum Theorem for Dimension Zero

If $X=\cup_{i=1}^{\infty} F_{i}$ where the F_{i} are closed in X and $\operatorname{ind}\left(F_{i}\right)=0$, then $\operatorname{ind}(X)=0$.

Cor: If $X=\cup_{i=1}^{\infty} F_{i}$ where the F_{i} are F_{σ} sets in X and $\operatorname{ind}\left(F_{i}\right)=0$, then $\operatorname{ind}(X)=0$.

Cor: If X is the union of zero dimensional subpaces A and B where A is closed in X, then $\operatorname{ind}(X)=0$.

Cor: If X is the union of a zero dimensional subpace A and a finite set B, then $\operatorname{ind}(X)=0$.

Thm: Product Theorem for Dimension Zero

Let $X=\prod_{i=1}^{\infty} X_{i}$. Then $\operatorname{ind}(X)=0$ if and only if $\operatorname{ind}\left(X_{i}\right)=0$ for each i.
Cor: The inverse limit of a sequence of zero dimensional spaces is either empty or of dimension zero.

Example: The subspaces $Q_{k}^{n} \subset R^{n}$ consisting of points with exactly k rational coordinates are zero dimensional.

