Mth 676 - Outline of Results: All spaces under consideration are separable metric.

Def.

- $\bullet \operatorname{ind}(X) = -1 \operatorname{iff} X = \emptyset$
- $\operatorname{ind}(X) \leq n$ if $\forall x$ and for each nbhd V of x, there is a nbhd U of x with $U \subset V$ and with $\operatorname{ind}(Bd(U)) \leq n-1$

1

- $\operatorname{ind}(X) = n$ if $\operatorname{ind}(X) \le n$ and $\operatorname{ind}(X) > n 1$
- $\operatorname{ind}(X) = \infty$ if $\operatorname{ind}(X) > n$ for all n.

Theorem: \forall subspace M of X, $ind(M) \leq ind(X)$

Def. L is a partition between disjoint subspaces A and B of X if

Theorem: X satisfies the $ind(X) \leq n$ iff $\forall x \in X$ and for each closed B with $x \notin B$, there exists a partition L between $\{x\}$ and B with $ind(L) \leq n-1$.

Thm. $\operatorname{ind}(X) \leq n$ iff X has a countable basis $\{U_i\}$ with $\operatorname{ind}(Bd(U_i)) \leq n-1$ for each *i*.

3

Dimension Zero

Thm: $\operatorname{ind}(X) = 0$ iff $X \neq \emptyset$ and for each x in X and nbhd V of x there exists a clopen U with $x \in U \subset V$ iff X has a countable basis consisting of clopen sets iff for each $x \in X$ and closed set B not containing x, the empty set is a partition between $\{x\}$ and B.

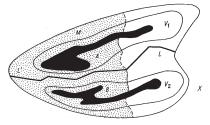
Thm: Every non empty subspace of a space X with ind(X) = 0 has ind = 0.

Thm: The first separation theorem for dimension 0. If X is a zero-dimensional pace, then for every pair A, B of disjoint closed subsets of X the empty set is a partition between A and B.

5

Recall, for each pair of separated sets A and B in X, there are disjoint open sets U and V with $A \subset U$ and $B \subset V$.

Lemma: Let M be a subspace X and A, B a pair of disjoint closed subsets of X. Let V_1, V_2 be disjoint opens subsets containing A and B respectively, with disjoint closures. For every partition L' in the space M between $M \cap \overline{V_1}$ and $M \cap \overline{V_2}$, there exists a partition L in X between A and B with $M \cap L \subset L'$



If M is closed, For every partition L' in the space M between $M \cap A$ and $M \cap B$, there exists a partition L in X between A and B with $M \cap L \subset L'$

Thm: Second Separation Theorem for Dimension Zero.

If Z is a zero-dimensional subspace of X, then for each pair of disjoint closed subsets A and B if X there exists a partition L between A and b with $L \cap Z = \emptyset$.

7

Cor: A subspace M of X has $\operatorname{ind}(M) = 0$ iff for each $x \in M$ and each nbhd V of x in X there is an open $U \subset X, x \in U$, with $\operatorname{Bd}(U) \cap M = \emptyset$ iff X has a ctble basis $\{U_i\}$ with $\operatorname{bd}(U_i) \cap M = \emptyset$ for each i.

Thm: Enlargement Thm for Dimension Zero For each zero dimensional $Z \subset X$ there is a G_{δ} set $Z_* \subset X$ with $Z \subset Z_*$ and $\operatorname{ind}(Z_*) = 0$.

9

Thm: Sum Theorem for Dimension Zero

If $X = \bigcup_{i=1}^{\infty} F_i$ where the F_i are closed in X and $\operatorname{ind}(F_i) = 0$, then $\operatorname{ind}(X) = 0$.

Cor: If $X = \bigcup_{i=1}^{\infty} F_i$ where the F_i are F_{σ} sets in X and $\operatorname{ind}(F_i) = 0$, then $\operatorname{ind}(X) = 0$.

Cor: If X is the union of zero dimensional subpaces A and B where A is closed in X, then ind(X) = 0.

Cor: If X is the union of a zero dimensional subpace A and a finite set B, then ind(X)=0.

Thm: Product Theorem for Dimension Zero

Let $X = \prod_{i=1}^{\infty} X_i$. Then ind(X) = 0 if and only if $ind(X_i) = 0$ for each *i*.

Cor: The inverse limit of a sequence of zero dimensional spaces is either empty or of dimension zero.

Example: The subspaces $Q_k^n \subset R^n$ consisting of points with exactly k rational coordinates are zero dimensional.