Def. The large inductive dimension of a separable metric space X, Ind(X), is defined as follows:

- $\bullet \operatorname{Ind}(\mathbf{X}) = -1$ if and only if $\mathbf{X} = \emptyset$
- $Ind(X) \leq n$, for $n \geq 0$, if for every closed set $A \subset X$ and for each open set $V \subset X$ containing A, there exists an open set $U \subset X$ such that $A \subset U \subset V$ with $Ind(Fr(U)) \leq n - 1$
- $\bullet \operatorname{Ind}(\mathbf{X}) = \mathbf{n} \text{ if } \operatorname{Ind}(\mathbf{X}) \leq \mathbf{n} \text{ and } \operatorname{Ind}(\mathbf{X}) > \mathbf{n-1}$
- $\mathbf{Ind}(\mathbf{X}) = \infty$ if $\mathbf{Ind}(\mathbf{X}) > \mathbf{n}$ for all \mathbf{n} .

Note: Equivalently, $Ind(\mathbf{X}) \leq n$ if and only if for each pair of closed disjoint sets A and B in X, there is a partition L between A and B with $Ind(L) \leq n-1$

Theorem: For each X, $ind(X) \leq IndX$.

Theorem: For each X, ind(X) = Ind(X).

30

Definition: The order of a collection A of subsets of X is the largest integer n such that the family contains n + 1 subsets with nonempty intersection. The order is ∞ if no such integer exists.

Definition: The covering dimension of X, dim(X), is defined as follows:

- $\label{eq:constraint} \begin{array}{l} \bullet \mbox{ dim}(\mathbf{X}) \leq n, \mbox{ for } n \geq -1, \mbox{ if every finite open } \\ \mbox{ cover of the space } \mathbf{X} \mbox{ has a finite open re-} \\ \mbox{ finement of order } \leq n \end{array}$
- $\bullet \mbox{ dim}(\mathbf{X}) = \mathbf{n} \mbox{ if } \mbox{ dim}(\mathbf{X}) \leq \mathbf{n} \mbox{ and } \mbox{ dim}(\mathbf{X}) > \mathbf{n} \mathbf{1}$
- $\bullet \operatorname{dim}(\mathbf{X}) = \infty \ \text{if} \ \operatorname{dim}(\mathbf{X}) > n \ \text{for all} \ n.$

31

Note: Recall definitions of refinement and shrinking of covers.

Theorem: The following are equivalent:

- $\bullet \operatorname{\mathbf{dim}}(\mathbf{X}) \leq \mathbf{n},$
- Every finite open cover of X has an open refinement of order $\leq n$, and
- Every finite open cover of X has an open shrinking of order $\leq n$

32

 $\begin{array}{ll} \mbox{\it Theorem:} & \dim({\bf X}) \leq n \mbox{ if and only if every} \\ n+2 \mbox{ element open cover has an open shrink-} \\ \mbox{ing of order} \leq n \end{array}$

 $\begin{array}{ll} \mbox{\it Theorem:} & \dim({\bf X}) \leq n \ \ \mbox{if and only if every} \\ n+2 \ \mbox{element open cover has an open shrink-} \\ \mbox{ing of order} \leq n \end{array}$

Corollary: $dim(\mathbf{X}) = 0$ if and only if $Ind(\mathbf{X}) = 0$

Theorem: For a compact metric (\mathbf{X}, \mathbf{d}) , the following are equivalent:

- $\bullet \operatorname{\mathbf{dim}}(\mathbf{X}) \leq \mathbf{n}$
- For every metric ρ on X and $\epsilon > 0$ there is a finite open cover of X of order $\leq n$ and of mesh $< \epsilon$
- There is a metric ρ on X such that for all $\epsilon > 0$ there is a finite open cover of X of order \leq n and of mesh $< \epsilon$