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Abstract

We apply an inverse problem formulation to determine characteristics of a defect from a perturbed
electromagnetic interrogating signal. A defect (gap) inside of a dielectric material causes a disrup-
tion, via reflections and refractions at the material interfaces, of the windowed interrogating signal.
We model the electromagnetic waves inside the material with Maxwell’s equations. This leads to a
non-standard, nonlinear optimization problem for the dimensions and location of the defect. Using
simulations as forward solves, we employ a Newton-based, iterative optimization scheme to a novel
modified least-squares objective function. Numerical results are given in tables and plots, standard
errors are calculated, and computational issues are addressed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem we consider is that of detecting a gap inside of a dielectric material using
high frequency electromagnetic interrogation. The idea is to observe the reflected and/or
transmitted signals and use the data to solve an inverse problem to determine certain char-
acteristics of the gap, e.g., location and/or width. Possible applications of this procedure
include quality assurance in fabrication of critical dielectric materials, or damage detection
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in aging materials for safety concerns. Further applications of electromagnetic interrogation,
as well as additional problem formulations and solutions, can be fouf2.in

The particular motivation for this research is the detection of defects in the insulating foam
onthe fuel tanks of the space shuttles in order to help eliminate the separation (delamination)
of foam during shuttle ascent. To this end we address the problem of detecting a single
gap formed between a dielectric medium and a supra-conducting backing representing the
foam and the metallic tank, respectively. However, first we develop our methodology on
the slightly simpler problem of a gap formed in the interior of the foam (void), where for
simplicity, we ignore the reflections from the back boundary (i.e., we impose absorbing
boundary conditions instead). We also allow for the possibility in this case that the foam
has been removed for testing, and therefore we are able to place sensors both on the front
and back sides of the foam.

To be applicable to real world problems we must eventually be able to solve these in-
verse problems with length scales on the order of 20 cm for the thickness of the foam,
.2mm for the width of the gap, and a wavelength of about 3 mm. This wavelength corre-
sponds to a frequency of 100 GHz, which is the lower end of the terahertz frequency range
(.1 ~ 10x 102 Hz). The rationale for using this choice of frequency is that higher frequen-
cies are significantly attenuated in the materials which we are interested in interrogating.
Lower frequencies (larger wavelengths) have less resolution in detecting small gaps, and
are less capable of sharply distinguishing between air and foam which may have a high
air content.

First we simplify the problem by considering a linearly polarized, pulsed interrogating
signal which reduces the problem to one spatial dimension. We then define an inverse prob-
lem for determining the gap’s dimensions. We assume that we have data from sensors,
located in front of and/or behind the material, that record the electromagnetic signal af-
ter it is reflected from (or passes through) the material interfaces. We compute simulated
signals with approximations to the gap’s characteristics and apply an optimization routine
to a modified least squares error between this simulated signal and the given data. In our
computations we use Maxwell's equations and a Debye polarization equation to model the
signal, and solve these equations using a finite element method in space and finite difference
methods in time. Thus the optimization routine finds those gap characteristics which gener-
ate a simulated signal that most closely matches the given data. In this sense we determined
an estimate to the “true” gap characteristics.

In Section 2 we define the equations that we have chosen in order to model the elec-
tromagnetic waves inside the material. We further distinguish between two problem types
that we will address (denoted Bsoblemsl and 2). Section 3 contains the details of our
numerical methods for the simulations. We introduce the inverse problem formulation for
Problem1 in Section 4, and later improve upon it in Section 4.2. Numerical results of the
inverse problem are displayed in Section 4.3.

In Section 5 we begin addressiRgoblem?2. Similarities and differences between the
computational issues between the two problems are pointed out. A more sophisticated
optimization method is described in Section 5.3 and associated numerical results are given
in Section 5.5. In Sections 5.5.1 and 5.5.2 we explore the effects of adding random noise
to the data, both relative and constant variance. In the latter, we compute standard error
estimates.
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Fig. 1.Problem1: dielectric slab with a material gap in the interior. Possible sensors in front and behind.
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Fig. 2. The domain of the material sla®:= [z1, z4].
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We interrogate an (infinitely long) slab of homogeneous nonmagnetic material by a
polarized, windowed signal (s¢2] for details) in the THz frequency range (S€ig. 1).
We assume a wave normally incident on a slab which is locaté€d=in[z1, z4] with faces
parallel to thex—y plane (sed-ig. 2). Note that we employ the “method of mappings” (see
[2]) in our computations, therefore we may assumezd < z4 < 1. We denote the vacuum
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outside of the material b§2y. The electric field is polarized to have oscillations in xe
plane only. Restricting the problem to one dimension, we can write the electric and magnetic
fields, E and H respectively, as follows:

E(t,%)=1E(t,2)

H(t, %)= JH(.2),

so that we are only concerned with the scalar valkigsz) andH (¢, z).
Maxwell's equationg5] then become:

OE OH
i la
oz Ho o (1a)
o _db +0E+J (1b)
—_—— = — ag s
oz ot y

whereD(t, z) is the electric flux densityy, is the magnetic permeability of free spaces
the conductivity, and, is a source current density (determined by our interrogating signal).
We take the partial derivative of Eq. (1a) with respect,tand the partial of Eq. (1b) with

2
respect td. Equating the% terms in each, and thus eliminating the magnetic fi¢ldve
have: '

E" = uo(D + oE + Jy),

(where’ denotes derivatives and denotes time derivatives).

Note that we have neglected magnetic effects and we have let the total current density be
J =J. + Jy, whereJ, = ¢ E is the conduction current density given by Ohm’s law in the
material.

For our source currentf;, we want to simulate a windowed pulse, i.e., a pulse that is
allowed to oscillate for one full period and then is truncated. Further, we want the pulse to
originate only at; = 0, simulating an infinite antenna at this location. Thus we define

J5 (1, 2) = 0(2) sin(wn) I 10,11 (1),

wherew is the frequency of the pulse; = 2r/w is fixed, /jo,.,(#) represents an indi-
cator function which is 1 when9Q <z, and zero otherwise, anilz) is the Dirac delta
distribution.

Remark 1. Computationally, having a windowed signal introduces discontinuities in the
first derivatives which are not only problematic in the numerical simulations (producing
spurious oscillations), but are also essentially non-physical. Therefore in ourimplementation
we actually multiply the sine function by an exponential function (8¢&or details) rather

than the traditional indicator function. However, for notational consistency we will continue
to denote this function ako.,1(1)-

The electric flux density inside the material, given by= ¢peo E + P, is dependent
on the polarizationP. Note thatsg is the permittivity of free space and, is the relative
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permittivity in the limit of high frequencies. For computational testing we assume for this
presentation that the media is Debye and thus we use the following polarization model
inside(2:

TP+ P= eo(es — ex0) E,

whereg; is a static relative permittivity ands a relaxation time. We also assui€, z)=0.
Note that in the vacuum outside €f P = 0.

In order to represerd in the entire domain, we use the indicator functignwhich is 1
inside(2 and zero otherwise. Thus

D = &oFE 4 e0(e0o — D IQE + IgP.

In order to have a finite computational domain, we impose absorbing boundary conditions

atz =0 andz = 1, which are modeled as

[E - cE"],.g=0,

[E +cE'],_1=0.
With these boundary conditions, any boundary incident signal passes out of the computa-
tional domain, and does not return, i.e., we force it to be absorbed by the boundary. Also
we assume zero initial conditions, i.e.,

E(0,z) =0,

E(0,z)=0. 2

Thus our entire system can be written

tioeo(L+ (0o — DIQ)E + uglo P + pgolgE — E” = —pgd; in QU Qo,
TP+ P =¢o(es — es0)E IN Q,
[E - cE"),.o=0,

[E+cE'],.1=0 ©)
with (2) and
Js(t,2) = 0(2) sin(wt) Ijo.1,1(7)- (4)

Classical solutions to (3) should not be expected due to the windowed interrogating signal
and the discontinuous dielectric parameters across interfaces. For this reason, and also to
enable the application of the finite element method, we prefer to convert (3) to weak form
using space$! = L»(0,1) andV = H(0, 1). Substitutinge, = (1 + (¢so — 1)Io) and
&4 = & — &0 results in the following weak system

(otoer E, ) + (olo P, ¢) + (uooIgE, ¢) + (E', ¢')
1 . 1. .
= 2 E@ Do + - £, 000 = —{uo)s, ),

(tP, ) + (P, P)o = (e0eaE, P)g, (5)
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Fig. 3. The domain of the material slab with an interior gap betweemdzz: Q={z|z1 <z<zp 0rzz3<z<z4}.

with (2) and (4). Note that, -) is modified from the traditional > inner product due to the
aforementioned use of the “method of mappings” (&% Existence and uniqueness of
systems of this type are treated#j.

In this formulation we have initially assumed a single slab of a dielectric contained in
Q = [z1,z4). ThusIg = 1 if z1 <z < z4, and zero otherwise. We now introduce a gap
consisting of a vacuum in the interior of the material as depictefign 3. If the gap is
located in(zz, z3) then we redefin® = {z]z1 <z <z or z3 <z < z4}. We will refer to this
formulation asProblem1 (recallFig. 1). Note that it is not necessary to enforce additional
conditions at the interfaces as they are natural interface conditions and are implied within
the weak form of the system. Later we will discuss a second problem formulRtioiolem
2, where the gap is between the dielectric slab and a metallic (supra-conducting) backing, as
shown inFig. 4. This will require slightly different boundary conditions (reflecting instead
of absorbing at =1, where the metal backing begins), but otherwise the numerical solution
methods and analysis are the same.

3. Numerical solution
3.1. Finite elements

We apply a finite element methd6] using standard linear one-dimensional basis ele-
ments to discretize the model in space. Nebe the number of intervals in the discretiza-

tion of z, andh = 1/N, then the finite element discretization has an order of accuracy of
O(h?). For implementation we scale time by= ¢ and the polarization by = P/¢q for
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Fig. 4.Problem2: dielectric slab and metallic backing with a gap between. Possible sensors only in front.

convenience. The resulting system of ordinary differential equations after the spatial dis-
cretization is the semi-discrete form

e Mé+ M2p + (ngoM® + D + B)é + Ke =y, (6a)
M2p+ iM% p = ey iMe, (6b)

where = % anding = «/_Mo/so- Also e andp are vectors represgnting the a_pproximate
values ofE andP, respectively, at the nodés= ii. The mass matriM has entries

1
m=m¢ﬂ:ﬁ@@m

where{d;,-}f":l are the basis functions{“ is the mass matrix integrated only oY, while
the stability matrixK has entries

1
Ky =0 0)) = [ gioy e

The matrice® andB result from the boundary conditions where
D11=1,
Byiin+1=1

and all other entries are zero. Finallyis defined as

1
Ji= _(¢iv -,?) = _/ jsd)i dz.
0

Note that by differentiating (6b) we can substitute into (6a) and obtain an equation only
dependent explicitly of® (two substitutions are required to eliminateand P):

e Mé+ (goM? + D + B + egAM)é + (K — eq/?M%)e + 12M%p = o J.
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Using shorthand we can write our entire coupled system as
M1é + Moé + Mae + )2 =nolJ, (7a)
P+ Ap=eaiM%e, (7b)

wherep = M%p. Itis important to mention that each matrix is tridiagonal due to the choice
of the linear finite elements.

3.2. Finite differences

In order to solve the semi-discrete form of our equations we consider two distinct finite
difference methods. In the first method we convert the coupled second order system of equa-
tions into one larger first order system and simply apply a theta method (unless otherwise
stated, we usé= %). In the second method we solve first for the polarization with a forward
differencing scheme using the initial conditions and then use that to update a second order
central difference scheme for the magnitude of the electromagnetic field. We then continue
this process iteratively, alternating between solvingf@nd forE.

Both methods are second order in time and space for appropriately smooth data (and with
At = O(h)). We have compared the errors and the run times of the two methods for several
smooth test problems and have determined that the second method is as accurate, but twice
as fast, as the first in all cases primarily due to the fact that the linear system is of smaller
dimension in the second method. Also, the first method incidentally solvésr@ddition
to eandp, which is superfluous.

In our second method we use a second order central difference scheme to solve (7a). Thus
we must first find an approximation #(t1, z) wherer; =i Az. Note that approximating
with its Taylor expansion aroung = 0 and applying the initial conditions and ODE, one
obtains

A% .
E(t1.2) ~ ——- 1o Js(0. 2).

Our approach is to first solve fgr using ad-method, and then use that approximation
to solve fore at the next time step. Thus, our finite difference approximation for (7b) is
- - AAt 0 _
Pn+1= Pn + m (eaM™> e, 9 — Dn)s (8)

wherele,]; = E(ty, ), [pnlj = M®P(ty, %)), Z; = jh, ande, g = Oe, + (1 — O)e, 11 is @
weighted average @f, ande, 1 for relaxation to improve the stability of the method. Once
we havep, 1 we can solve foe,,. Applying a second order central difference method
with averaging to (7a) gives

Atepip = Ageyy1 + Aze, + A1‘2770‘]n+1 - ;LZAtzﬁn+l- (9)

Note that in this casd is tridiagonal and the matrix is the same for each time step, so we
may store the Crout LU factorization and use back substitution to solve the system at each
time step. For tridiagonal matrices the factorization and the back substitution are both order
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Fig. 5. Computed solutions at different times of a windowed electromagnetic pulse incident on a Debye medium
with a gap.

O(N). Seg[3] for computational issues encountered in implementation, including the use
of the method of maps to allow for gap sizé$ ¢émaller than the mesh sizie)(

3.3. Numerical simulations

The following figure depicts the numerical solution of the amplitude of the electric field
at various times (Figh). We considered a Debye medium with the following parameters:

e =182,

0o = 5.5,
c=1x107,
7=3.16 x 10_8,
f=2GHz

and a material gap located[ag, z4] = [.6, .61].
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We have used 2 GHz simply so that our computational domainef0, 1] would not
have to be scaled for this demonstration. Also, in practice, one would not compute a domain
so much larger than the material, just as in an experiment the sensors should be as close to
the material as possible to reduce noise. We did so here merely so that the full wavelength
of the signal would be visible. S¢8] for figures showing the signal recorded at receivers
located at = 0 andz = 1.

4. Problem 1

We now apply an optimization routine to the least squares error between a simulated
signal and the given data to try to determine the gap characteristics. In particular we will
be trying to find the depthi := z» — z1, and the widthy := z3 — z», which will produce a
simulated signal most closely similar (in the least squares sense) to the data. Existence and
continuous dependence of inverse problems of this type are addregggd in

4.1. Inverse problem

All of the following are solved with respect to a reference problati)(with these
parameter values (see aB. 3J):
720=0,z1=.2,20=.3,23=.5,24=.8,z5 = 1.0,
f =4GHz,ts is one period,
1=81x1012 6=1x 1075, ¢ =801, ¢x, = 5.5 in the material,
N =1024 N, = 12926.
The sample rate for the data is one samplespet .05 ns
The corresponding values@f, o) are(.1, .2). With this choice of parameters, the forward
solve solution at = 0 clearly shows distinct reflections from thg z2, andzz interfaces.
This clear distinction will aid in our approximating the initial guesses, thus making this a
relatively easy sample problem.

4.1.1. Initial guesses

Assuming the physical parameters are given (either known or from a previous estimation),
we want to determine the depth of any gdp &nd the width of that gap], using reflection
and/or transmission signals. First we attempt to get very close approximatidrenthd
using information about the travel times of the data signal, then we use these values as initial
guesses in the optimization routine. $8gfor a complete discussion of the methods used
in determining initial estimates.

4.1.2. Optimization of least squares error

With initial estimates tal andé established, we define our inverse problem to be: find
g = {d, 8} € Qa4 such that the following least squares error between the simulation and
the observed data is minimized:

M S
1 .
== E(,2%; q) — Eip)>. 10
T(@) = 5 ,-—11-—1(( 2 1q) — Eij) (10)
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Here theli"ij are measurements of the electric field takeM apecific locations (e.ng =0
and/orzzo =1) andSdistinct times (e.g., every- = 0.06 ns). TheE (¢;, zjo; q) are solutions

of the simulations evaluated at the same locations and times corresponding to tli& data,
and using parameter valugsThe setQ,, is the feasible set af values determined such
thatd ando are realistic (e.g. positive).

We apply an inexact Gauss—Newton iterative method to the optimization problem. That
is, we re-write the objective function as

J(q) = 1 RTR

V=oms ™ ™

where Ry = (E (1,295 q) — E;j) for k=i + (j — 1)M is the residual. To update our
approximation tay we make the Inexact Newton update sigp= q. + s. where

se=— (R'(@e)"R' (o) VI (q0)
= — (R'()"R'(ge) " R (g)T R(ge)

is the stepg. is the current approximation, agd is the resulting approximation. This is an
inexact method because we have disregarde® Hessians of E(¢;, zjo; q) — Ei), which
is generally acceptable for small residual problgiis

In this simple case we have ax2 matrix inverse, so we can compute it explicitly. Each
iteration requires one function evaluation and a forward difference gradient, which is two
additional function evaluations (since we have two parameters). Each function evaluation
is equivalent to a simulation. Therefore we want as few iterations as possible.

4.1.3. Convergence

Initial testing (withz = 0 data only) shows convergence to eight decimal places of each
parameter in six iterations of Gauss—Newton with initial guesses having at most 5% relative
error ind and 2% ind. The algorithm does not converge to the correct solution if the initial
guess fod has 5% relative error or if the initial guess fdhas 10% relative error.

One reason that the algorithm fails to converge is that this objective function is poorly
behaved. IrFig. 6we show a plot of the objective function with respecttd he two very
large peaks id on either side of the exact minimizer are due to the simulated solution going
in and out of phase with the exact solution. For this example, the simulated solution is most
out of phase with the exact solutiondt= .181 andd = .219 (i.e., approximately™ + ﬁ),
which correspond to the first and second peal, irespectively. The same phenomenon
occurs in thal direction, for the same reasons. $&ffor a thorough demonstration of this
behavior.

Very few optimization routines can provide convergence without initial conditions be-
tween the two peaks ih The effective convergence region for this objective function applied
to this problem (with or without observations at 1) is within about 8% of the actual
value ofé whend is exact and within about 3% of the actual value af when¢ is exact.

Note also that the convergence region is very dependent on the frequency of the
interrogating signal; for higher frequencies, the region is even smaller. This is because
the distance between the two peaksliis linearly dependent on, the wave length of
the interrogating signal. This has profound implications for our desire to interrogate with
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z2e =0.3,1J = 1, N=1024, Nt=15361, Ns=215, MinJ(R) = 0 @ delta = 0.2
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Fig. 6. Nonlinear least squares objective function verstes a small range ob values (data at = 0 only).

signals in the Terahertz range. There are also peaksith respect tal as well, for the
same reasons.

Further, this is considering only a one parameter minimization problem with the other
parameter held fixed at the exact solution. Convergence is much worse for the actual two
parameter problem. In fact, in the full surface plotlpé diagonal “trench” occurs approx-
imately along the line

1 * *
d=—52 (6= +d". (11)

(where* denotes the exact solution). This phenomena is further explained, and depicted in
various figures, irf3].

4.2. An improved objective function

As demonstrated above, the usual Nonlinear Least Squares objective function when plot-
ted with respect to eitheror § has two large peaks ihon either side of the exact minimizer.
The reason for these peaksliis that the simulated solution goes in and out of phase with
the data ad or 6 change. When they are precisely out of phase, there is a very large absolute
error, which when squared, causes the objective function to have large peaks. Therefore,
one solution is to not consider the absolute error, but instead the error of the absolute values,
i.e., the following objective function:

M S

1 .
B@) =50 3 Y (EC 205 )l = i) (12)

j=1i=1
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Fig. 7. Our modified nonlinear least squares objective functioh yersusd for a small range ob values. The
dotted lines represent the delta values that will be tested if a local minimum is found.

This non-standard mechanism will prevent the fact that the signals go in and out of phase
with each other from having an impact on the objective function, since positive magnitudes
cannot cancel each other out. Therefore it gives a more accurate measure of the difference
between two signals. Note that the orientation of the interrogating signal (e.g., peak first)
precludes the possibility of a soluti@from having the same magnitude but opposite sign

as E. Further, note thati>(g) is not differentiable on a set of measure zero; this is very
unlikely to affect the finite difference computations of the gradients, and did not present
problems in our numerical testing. We plfit(¢) versuso in Fig. 7. Se€[3] for other plots
including surface plots a% varies overd ando.

Note that while we have effectively eliminated the peaks on either side of the exact
solutions, in essence we have merely converted them to local minima! But, since the minima
occur for the same reasons the peakshiad been occurring, they occur at the same values
of 0. Note that we can see from plotting the signals that they were exactly out of phase when
they were shifted byﬁ, where/ is the wavelength of the interrogating signal. Therefore

is off by %1. Since we determine the frequency of the interrogating signal, this is a known
quantity, and we can predict where these local minima will occur a priori!

Most optimization routines will continue until they find a local minimum, and since the
two false minima described above are at least close to “predictable” locations, we can easily
test on either side of any detected minimum to determine ifitis in fact glob&lisfless at a
fixed distance in thé direction (e.g.7) on either side of a detected minimum, i.e., at either
test locationof the local minimum, we restart Gauss—Newton at the new best guess. Thus
if either of the two local minima described above is found, we will eventually have global
convergence if one of thefest locationsare sufficiently close to the global minimizer.
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To graphically demonstrate this approach, we have added dotted and dash-dotted lines to
the graph of/2(9) in Fig. 7to represent the test values of the first and second local minima,
respectively. One can clearly see that if either local minimum is detected, the test value
either to its right if it is the first one, or to its left if it is the second, will give a smalleand
should eventually lead to the global minimizer being detected. Using this method we have
in principle increased our convergence region to about 258wmdfend is exact. The same
approach works for thd direction, increasing its convergence region from abob¥%w/to
about 15% whe is exact.

Other possible modifications to the least squares objective function having similar effects
include squaring the signal instead of taking the absolute value (thus preserving smoothness
everywhere), or just halving the reference signal so that we only have a positive amplitude
to begin with. Each of these options will still have the local minima problems described
above, as well as their own unique disadvantages.

4.3. Testing/>

In order to determine the limitations of an optimization routine to minimize our objective
function J> in a more practical setting we examidg versusq when error is present. In
particular we try both adding random noise to the data signal, as well as testing bad initial
guesses fod andd. It should be noted that in the tests reported on below we assume that
data atz = 1 is not available and used only observations at0.

4.3.1. Sensitivity to initial guesses

For J> described in (12), the objective function is more sensitivetttan tod, therefore
itis imperative that our initial guess fdiis as good as possible. To give an idea of what may
happen if ourd estimate were not within the 15% our testing has determined is necessary,
we examined plots of the objective function versuer three values ofl, which are 3%,
15%, and 30% off respectively (these are displaye[8jh With errors greater than 15%
an erroneous global minimum appears for snéallalues. This occurs because the first
reflection of the data is not matched by the simulation, but the second reflection matches
it if ¢ is small enough (se@] for details and sample plots). It turns out that the distance
between the erroneous global minimum and the correct minimum is exée#.2, which
is what would be expected. However, we cannot apply the same idea as before where we add
or subtract a fixed amount to test for other local minima, since for one, the “more optimal”
of the two is farther from the “true” solution, and also, we would have to kidworder
to add or subtract it (but is what we are trying to estimate!).

4.3.2. Random observation noise

In order to test the feasibility of this procedure as an estimation method, we have produced
synthetic data for our observatiols. In an actual experiment, one must assume that the
measurements are not exact. To simulate this we have added random noise to the original
signal. The absolute value of the noise is relative to the size of the sigralidfthe data
sampled, then we defing = E; (1 + vn;), wherey; are independent normally distributed
random variables with mean zero and variance one. The coeffigiletérmines the relative
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Table 1
Number of iterations and CPU time for Gauss—Newton given various relative magnitudes of random error

v d 0 J Iterations CPU time (s)
0 0.1 0.2 1.32319E-10 7 160

0.01 0.099994 0.199969 0.00792792 8 186

0.05 0.099974 0.199835 0.199489 13 291

0.2 0.099928 0.199204 3.04619 20 435

magnitude of the noise as a percentage of the magnitude ,ah particular,y = 0.05
corresponds to 10% noise ane: 0.025 to 5% noise.

Plots of the resulting objective functions for various valuesi@nging from 2% to 40%
are shown iff3]. Summarizing these results, we note that the structure of the curves is not
significantly affected, nor is the location of the global minimum. However the magnitude of
the minimum of the objective functionisincreased, making Inexact Newton methods slightly
less reliable due to the larger residual. Still, our results show that the correct minima were
consistently found and within a reasonable amount of time. Select examples are summarized
in Table 1 Corresponding initial estimates ranged from, in the- 0 case,(do, dg) =
(0.0936890.20986 to, in thev = .2 case(dp, do) = (0.109668 0.172385.

5. Problem 2

We next apply the most useful techniques obtained from investigations of Problem 1 to
a new formulation of the interrogation problem. In Problem 2 we consider a dielectric slab
and a metallic backing (conductor) with a possible gap between the twd-igee4and
8). Applications of this specific formulation included detecting delamination of insulation
from metallic containers, e.g., insulating foam on a space shuttle fuel tank. In order for this
numerical approach to be useful in this particular application we must be able to resolve a
gap of width .2 mm inside of a slab with a thickness of at least 20 cm using a frequency of
100 GHz.

We will again assume the same physical parameters for our dielectric and consider the gap
as a vacuum. The variabldsaindo are still the depth and the width of the gap, respectively.
One major difference is that in this problem we are only able to detect the electromag-
netic signal in front of the material. Also, since the metallic backing reflects much of the
signal, we have considerably more overlapping of the reflections to worry about. These
properties contribute to the fact that this formulation leads to a much more difficult inverse
problem. For this reason we will be using more sophisticated optimization routines includ-
ing a Levenberg—Marquardt parameter and implicit filtering. We will also need to develop
different approximation methods for our initial guesses.

The implementation of this problem has several minor differences from the previous one.
First, we now only need to represent two interfagesind z2, with zp andzz being the
front and back computational boundaries, respectively. Thus now we define the depth of
the gap asl := 72 — 71 and the width a® := 73 — 7». Also, as previously mentioned,
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Fig. 8. The domain of the material slab with a gap between the medium and a metallic conductive backing:
Q={zlz1<z< 22}

the conductive metal backing reflects the signal, and hence we must change our absorbing
boundary conditions at=1 (for a finite computational domain), to an actual fixed, Dirichlet
boundary conditionf=0). We must modify our finite element matrices accordingly, as well.
Otherwise, the numerical method for simulation is the same as it was for Problem 1, namely
standard finite element methods for spatial derivatives, and an alternating implicit/explicit
centered difference time stepping scheme. Sample solutions are plofied &

We again define our inverse problem to be: find= {d, 6} € Q.4 such that an objective
function representing the error between the simulation and the observed data is minimized:

min J(q).
‘IeQad q

Here the measurements of the electric fidld,are taken only at =0, but still atSdistinct
times (e.g., every 0.06 ps). The solutions of the simulati@is,, 0; ¢), are evaluated at
the same location and times corresponding to the given data, and using parameter values
g. In lieu of actual data from experiments, we again create our observed data by using the
simulator, however, the only information that is given to the minimizer is the data observed
atz = 0, which we will denote by£.

The system that we use to model the propagation of the electric field, and thus simulate in
order to solve our inverse problem, is as follows, and includes the above mentioned Dirichlet
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Fig. 9. Computed solutions at different times of a windowed electromagnetic pulse incident on a Debye medium
with a gap between the medium and a metallic conductive backing. The width of the glab.32 m and the
width of the gap i) = .0002 (barely visible at the far right of the gray region).

condition atz = 1:
poeo(1+ (600 — DIQVE + poloP + pooE — E" = —pods  in QU Qo
TP 4+ P =1e0(es — 6s0)E IN Q,
[E — cE'],._g=0,

[E],=1=0,
E©,z)=0,
E(0,z) =0,

with
J5(t, 2) = 6(2) sin(wr) [10,1,1(t).

See Section 2 for a complete description.



398 H.T. Banks et al. / Nonlinear Analysis: Real World Applications 6 (2005) 381-416

Jl

350 -
300

250

L7
AN
SRR

: B e ase
. I LZFHR 22 4 —~
. e Z 7

200 4 o SRR NS
S T e
. A A2

150

100

50 x 103

0 S

0.028 0.026 0020
' 0.022

0.02 0.018

depth 0.016 0

Fig. 10. Close up surface plot of least squares objective function demonstrating pdakadhexhibiting many
local minima.

5.1. Objective function

As in the previous problem, we encounter difficulties when attempting to use the standard
least squares objective function to compute the error between the simulated signal and the
observed data. The constructive interference of peaks and troughs produces peiaks in
the objective function on all sides of the global minimum which make it nearly impossible
to find the solution in the middle. The peaksliare clearly apparent iRig. 10 In contrast,

Fig. 11shows a surface plot of our modified least squares objective function

S
1 ~
Jo(g) = o > NE®. 0: q) — |Ei|l°.
i=1

It is clear, as before, that the initial guess is crucial to the success of any optimization
routine. Notice that although does not exhibit the familiar peaksdof J1, it does however
still have many local minima, which are just as difficult to avoid in a minimization routine.
The local minima in/, for this problem occur approximately eve%)along the line

d= ! 0+b
= NG .
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Fig. 11. Close up surface plot of modified least squares objective function demonstrating lack of pkdks in
exhibiting many local minima.

This happens for the same reason as in Problem 1[8€er details and illustrations).
Because we cannot eliminate these local minima, we must appeal to the procedure that
worked in the previous problem, namely testing “check points”. Since we know where
these local minima are occurring with respect to the global minimum, if our minimization
routine finds what it suspects to be a local minima, &y 61), we simply checkd, +

ocﬁ, 01 F 0/ec0 ﬁ), wherex =1/4/1+ ¢ If we find a lower objective function value, we
restart our optimization routine at that “check point”.

5.2. Initial guesses

In spite of our faith in the “check point” method, we still desire to find the best initial
guesses for our optimization routine as possible so that we may hopefully find the global
minimum without restarting. As before, we use the travel time of the first trough to approx-
imate the location of the first interface. However, in this formulation we can take advantage
of some of the characteristics of the signals. For example, the first reflection off the gap is
always trough-first, and the second (as well as each subsequent reflection) is always peak-
first. For this reason, if we want to locate the first trough we can simply find the largest
peak (belonging to the second reflection) and back track. It is a very simple matter to find a
maximum or minimum of a vector of values. After the location of the largest peak is found,



400 H.T. Banks et al. / Nonlinear Analysis: Real World Applications 6 (2005) 381-416

40 T T T T T T

20 | / A - o B

40 T T T T T

t (ns)

Fig. 12. The top plot represents several signals which may be observed in a simulation of Problem 2. The bottom
plot shows the sum of the top signals. The peak of the second signal is just beginning to be obscured by the first
when o becomes less tha%. Thus the observable maximum is still a good approximation of the peak of the
second signal, and a trough to peak distance can be used to estimate

we back track to find the minimum in front of it, namely that belonging to the first reflection
off the gap. Then using the procedure described in Section 4.1, we approximate the root
immediately in front of this trough. That gives us the travel time for the first reflection off
the gap, which in turn gives us the deptbf the gap.

Findingd is, unfortunately, not nearly as straightforward. There are two main possibilities,
and therefore, two differing approaches to approximadimdepending on the nature of the
reflected signal. We consider the two cases:

(i) The leading trough of the first reflection and the second reflection are disjoint (i.e.,
0> g). In this case we can find the locations of the peak and trough and use the travel
time between the two to approximaieWe denote this approximation y. (Note
that the observed peak is not necessarily the same as the original peakﬁunl%s.s
but it is still a good approximation). Séeg. 12

(i) The second reflection partially truncates the trough of the first a.e.é). As arough
approximation, we can assume that the location of the actual minimum (trough) is
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Fig. 13. The top plot represents several signals which may be observed in a simulation of Problem 2. The bottom
plot shows the sum of the top signals. The trough of the first signal is partially truncated by the second signal. In
this case the observed minimum is a still a good approximation to where the second signal begins. Fod smaller

a linear approximation must be used.

where the two signals begin to interfere with each other (the observable minimum).
SeeFig. 13 We denote this approximation 13y.

A more accurate method is to use triangles to approximate the two reflections. By
knowing the location of the maximum and minimum (peak and trough, respectively),
and also the beginning of the first signal (from Section 4.1) and the rough approximation
to the beginning of the second signal usiflg we can estimate the slopes of the
two triangles with finite differences. Also note that since the two signals are added,
the observed root between the peak and trough in the combined signal is actually an
equilibrium point between the two signals. By setting equal to each other the two linear
approximations for each of the two signals, evaluated at the equilibrium point, we can
solve for the distance between the starting point of each signal, and this f6ee

Fig. 14 Specifically, let(p1, g1) be the location of the trough of the combined signal
and (p2, g2) be the location of the peak. Let be the location of the root in front

of the trough, and, be the root between the trough and peak. Estimate the slope of
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Fig. 14. This schematic shows the roots, extrema, distances, and slopes used in the computation of

the first signalmi < 0, using(p1, ¢g1) andri. Now if we lety = rp — r1 and sayx is
the actual distance betweenand the beginning of the second signal, then setting the
linear approximations equal in magnitude, but opposite in sigmn, yelds

—m1y =m2(y — x).

Now we can estimate the slope of the second sigmal> O, using (p2, g2) and
(r2, —m1y). Also, we can re-write the above equation as

()
x=—"]Yy
mp
To find 63 we simply dividex by 2 and the (scaled) speed of light in the material, i.e.,

e

Since each of the two situations above is dependent on the parameter it is approximating,
we must also determine which of the above methods is most appropriate to use. Thus we use
the most precise of the available methods to determine the situation,j.;stead ofs
since in generals underestimate$so we do not want to use it as a criterion for determining
whethero is small. (Note that whe# is indeed smallps is more accurate thady.) The
estimate ford, tends to be an overestimate, and is only valid i §. Unfortunately,d,

also tends to be an overestimate, so we prefer to only trust it entirely if it is Iargeéthan

If neitherdy nor d3 is a sufficient approximation we choose to use the average of the two,
and call ito,.

Therefore our algorithm for approximatidgs as follows:

(@) If 34 < § then useis



H.T. Banks et al. / Nonlinear Analysis: Real World Applications 6 (2005) 381-416 403

(b) else ifdy > % then use’
(c) else us&, (average betweedy andds).

We tested our approximating methods on exact degftvdlues of: .02, .04, .08, .1,
and .2m, and values of widtlé); .0001, .0002, .0004, .0006, and .0008 m. Sigds the
transition point between the two situations, it is understandabledndigse to this value
is the most difficult to accurately resolve. We chose this rangeésdiecause our choice of
frequency give% =3.7475x 10~*m. See the tables 8] for the initial estimates of and
0

The approximations improve slightly as the number of finite elements is increased, and
appeared to converge to fixed values. This suggests that numerical error (and instability)
can affect the estimates. For each case there is a significant amount of visible numerical
error in the simulations below a certain number of elements, therefore in approximating
we chose to use the number of elements just above the threshold.

While the initial estimates were relatively inaccurate, senagproximations being al-
most 100% off from the true solution value, in the numerical tests we performed, all the
initial estimates were sufficiently close to the true, global minima as to not cause the op-
timization routine to result in a false, local minima. While our “check point” method is
available if needed, it is much more efficient to have an accurate initial estimate than to
restart after optimizing from a bad one. Still, the rep/@it describes several very real
examples where the “check point” method would be a necessary last resort.

5.3. Optimization method

Now that we have approximated our initial guesses, we need to minimize the objective
function in order to solve the inverse problem. In Problem 1, Gauss—Newton was sufficient
to find the global minimum for most cases. In this formulation, however, we will apply more
sophisticated methods, reverting to Gauss—Newton whenever possible since its convergence
rate is best.

The first modification we make to Gauss—Newton is to add a Levenberg—Marquardt
parametery. (se€[7]). The Inexact Newton step becomes

se=—(R'(q)"R'(qe) +ve )T R (go)T R(qe).

The parameter adds regularization by making the model Hessian positive definite. The
method uses a quadratic model Hessian, and also has a built-in line search with a sufficient
decrease condition. The line search is based on the predicted decrease computed from the
quadratic model. If the actual improvement of the objective functipns close to the
amount predicted by the model Hessian after a step is taken, then the method decreases the
Levenberg—Marquardt parameter, effectively increasing the relative size of the next step,
which hopefully accelerates the convergencevAs decreased to 0 the method becomes
Damped Gauss—Newton (meaning Gauss—Newton with a line search). If, however, the
actual improvement aof after a step is not sufficient (or is even negative)is increased,
effectively scaling back the Newton step, and we retest. If there are too many reductions
then we declare a “line search failure” meaning that too small a step is required to decrease
the objective function.
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Usually a method would exit after a line search failure, returning the best approximation
so far. But we use this failure to call an adaptive mesh size routine, i.e., an implicit filtering
technigue. The idea is that the failure is likely due to the fact that the direction the finite
difference gradient chose is probably not an actual “descent direction” in the global sense.
In other words, the finite differencing is most likely differentiating noise. In the same
manner that a smooth surface may look rough under a microscope, using too small of
a differencing step amplifies effects from round-off error and other sources of numerical
noise. Our technique is to increase the relative differencing stepcompute the gradients,
and then try the Levenberg-Marquardt method again. The relative differencing; step,
such that the gradienY;, of J(¢) = J([d, ]) is computed with

J((A+h)d .0)—J (d,d)
hd

V;J(d. ) = X
J(d.(14+h)5) =T (d.9)
o

We apply a similar approach to modifying the differencing sﬂeps we do for changing
v. in that after a successful step we decreadaut if we have another failure we increase
h even more. Since the convergence rates of gradient based methods are dependent on the
size ofh (for example Gauss—Newton is(ﬁ.‘?)) we wanth to be as small as possible and
still be effective, similarly withv.. We use a three tiered approach to changintitially
we seth = 109, To increasé: we raise it to th% power, to decrease we raise it to tge
power. Additionally we define 10 to be the maximum allowable differencing step value.
Thush € {1079,10°%, 104}.

In general an optimization method exits with “success” if the norm of the current gradient
is less thartol times the norm of the initial gradient. However, in our method we do not
immediately trust the finite difference gradients, and instead call implicit filtering again
when the gradients appear small. When we have verified small gradients on all three scales
(the various values of the differencing slfenefined above), then we exit with “success”.

Remark 2. In practice, a very good solution is found within a couple of Levenberg—
Marquardt steps, and then an equal number of Implicit Filtering iterations verify, and some-
times enhance, this solution. In the interest of efficiency, and since this is a parameter
identification problem, we exit early with “success” if our objective function is satisfac-
torily small (i.e.,tol times the initial value), which can save on average about half of the
possible iterations.

Additionally we impose a restriction on the number of “pullbacks” on each linesearch,
and on the number of iterations, effectively limiting the total number of function calls. If a
small gradient has not been verified on all scales before exhausting the maximum number
of iterations, we exit with “failure”.

5.4. Numerical issues

For smallN the difficult cases are those with large depth. This is because the computational
domain is effectively increased when the depth is increased, making the mesh sizes larger
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and increasing the level of numerical error. The magnitudé d@bes not seem to have a
significant effect on the convergence of the method.

An obvious disadvantage to having a laigés that each simulation takes much longer.

In general the total execution time is quadrupled when the number of elements is doubled.
This is consistent with the fact that complexity of the most time consuming part of the
simulation, the linear solves, is(®), and the number of time step§ is also QN). So

when we double the number of finite elements we are also doubling the number of time
steps. Therefore, we get an overall complexity ¢M3). Thus, as mentioned before, in our
inverse problem we choose to use the number of elements just above the threshold of when
numerical error is apparent.

We should also mention that in order to create data, in lieu of actual experimental data,
we perform a simulation at a higher resolution believing it to be more accurate. Specifically,
we double the number of finite elements. Since the time step, and therefore the effective
sample rate if the time step is too large, are both dependent upon the mesh size [8&fer to
the sample times of the simulated data do not necessarily correspond with the sample times
of the simulations at the lower resolution. (In general we have twice as many samples from
the higher resolution.) Thus in order to compute the modified least squares error between
the two vectors, we perform a linear interpolation of the simulated data onto the sample
times at the lower resolution. S&&g. 15 Note that in the usual case where we simply
have twice as many sample points from the higher resolution simulation, we are in effect
discarding sample points rather than doing a true interpolation.

For comparison we compute the low resolution simulation using the valtiasd 6*

(note that this is not the same as taking the high resolution simulation and interpolating it
onto the low resolution time steps, which we actually use as our observed data). In every case
that we have tested, when computed with thé ando values found from the optimization
routine @min anddmin), is less than or equal thwhen computed with the original values

(d* andd™). This suggests that an actual global minimum of the objective function has been
found, even though the final estimatesi@ndd themselves are not necessarily equalto
andé*. Note inFig. 15that the simulation using original valugg,*, 6*), is in fact closer

to the original data, but the simulation using the minimizer val(gn, dmin), IS closer to

the interpolated data (see for example {1335, .3352 interval).

Although we could compute our optimization routine at the same resolution as the sim-
ulated data to get a better fit in our tests, this would not properly represent the real-life
phenomenon of sampling data. Sampled data is inherently not a completely accurate repre-
sentation of a physical observation. We believe that our interpolation approach gives a more
realistic expectation of how our method would perform given actual experimental data. In
order to further test the robustness of our inverse problem solution method we introduce
random noise to the detected data in Section 5.5.

5.5. Numerical results

Tables 2and3 show the final computed approximations for the depth of the slaf)
and the width of the gap behind &in). The relative differences from the original values
used to generate the daté* (and ™), are: for depth, on the order @001 and ford, on
the order of 01. However, this does not imply that the optimization routine was unable to
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Fig. 15. Plotted are the actual simulated daVa=£ 2048), the interpolation of the simulated data onto the low
resolution sample times\ = 1024), the result of the minimization routin& (= 1024), and a low resolution
(N = 1024) simulation using the exact valuesdadnd.

Table 2
The final estimates af
d d

.0001 .0002 .0004 .0006 .0008
.02 (N =1029 0.0200053 0.0200022 0.0200006 0.0200005 0.0200002
.04 (N =2048 0.0399948 0.0399974 0.0400005 0.0400005 0.0399999
.08 (N = 4096 0.0799973 0.0799987 0.0800006 0.0800006 0.0800003
1 (N =8192 0.0999945 0.0999974 0.1 0.1 0.0999999
2 (N =16384 0.200011 0.200005 0.2 0.2 0.200001

find the optimal solution. Recall that since our data is generated with essentially a different
simulator than our forward solves, the original values do not necessarily minimize the
objective function. The objective function values give a better indicator of how well the
optimization routine works since it shows the fit to the generated datde 4shows the
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Table 3
The final estimates af
d 1)
.0001 .0002 .0004 .0006 .0008
.02 (N =1024 9.40622e-05 0.000196754 0.000398642 0.000597275 0.00079707

.04 (N =2048 0.000106435 0.000203916 0.000394204 0.000592156 0.000793622
.08 (N =4096 0.000103585 0.000202273 0.000395791 0.000593861 0.000794401
A (N =8192 0.000106593 0.000203876 0.000396203 0.000594976 0.000795985
2 (N =16389 8.7456e-05 0.000191808 0.00040297 0.000602902 0.00080129

Table 4
The objective function value of the final estimates
d 1
.0001 .0002 .0004 .0006 .0008
.02 (N =1029 0.00786171 0.00906699 0.0115657 0.0233783 0.0447687
.04 (N =2048 0.021516 0.0343314 0.0514108 0.0700747 0.0927117
.08 (N = 4096 0.0116105 0.0145428 0.0201004 0.0272513 0.0344458
1 (N =8192 0.00304723 0.00547532 0.00779186 0.00931778 0.0118529
2 (N=16384) 0.000609258 0.00133978 0.00146975 0.000962975 0.000766141

final objective function values. In each of these cases, the final objective function value
(Jmin) was less thad ™ := J(¢*). In fact, the ratios/, := Jmin/J* were on averags3008.
We consider any, < 1 to represent a successful convergence.

Althougho values that are negr= 3.7475x 104 m are the most difficult for which to
obtain initial approximations, we see that the objective function values in these cases are
just as small (and the final estimates are just as close) as fordtiadues.

The execution time, in seconds, as well as the number of function calls, are gi&}n in
While the above tables establish that we were actually able to resolve the case of 20 cm depth,
there was a price we had to pay. The average execution times for each of different mesh sizes
(N =1024 2048 4096 8192 and 16384) were 3248 1452 6229 and 35509 seconds,
respectively. Each represents an increase in time over the previous mesh size by a factor of
6.4,5.9, 4.28, and 57, respectively. This is consistent with the fact that the forward solves
are order @#?). However, the additional sample points for the layerases allowed for
smaller initial objective function values which resulted in increasingly more iterations to
satisfy the relative tolerance in our stopping criteria. This explains why we do not see ratios
closer to the expected 4 for order/3) methods.

5.5.1. Relative random noise

We add random noise to the signal, as mentioned above, in order to more closely simulate
the experimental process in data collection. As in Section 4.3.2, we start with relative noise
where the absolute value of the noise is proportional to the size of the sigrigl.isf
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the data sampled, then we defifie= E; (1 + v1;), wherey; are independent normally
distributed random variables with mean zero and variance one. Again, the coeffjcient
determines the relative magnitude of the noise as a percentage of the magnifijdéof
particular,v, = 0.01 corresponds to 2% noise. We tested relative magnitude levels of 2%,
10%, and 20% (corresponding tp = .01, .05, and.1 respectively). Sep3] for tables of
initial estimates. In nearly all the cases the estimate was close enough for the optimization
method to converge/( < 1) to the expected minimum. The only exceptions were withl
andéd = .0004, which are understandably the most difficult cases.

The final approximationgmin anddmin in the presence of noise are also giverj3h
Some approximations with high noise appear to be better approximations than some with
little or no noise. For example, witfi' = .0001, d* = .04, thev, = .1 final approximations
are an order of magnitude closer to the original values than,.the final approximations.
This is not to say that the noise helps the approximation method. Rather, it is for the same
reason that, for example, as showrrig. 15 the actual parameter values produced a signal
farther away (in the least squares sense) from the generated data than a signal computed with
the approximated parameter values. The resulting objective function values give a better
indication of the accuracy of the approximation to the data. The final objective function
values corresponding 9 = 0 were two orders of magnitude smaller on average than those
resulting fromv, =.1. Thus, itis clear that the data without noise is more accurately matched
by its approximations than those with noise.

5.5.2. Standard error analysis

In an actual inverse problem using data collected by experiment, one desires to have
confidence intervals on all parameter estimates. We will apply standard error techniques to
an ordinary least squares (OLS) formulation of our problem to obtain confidence intervals
on our estimates. In order to rewrite our objective function in an OLS formulation, we define
y(t; q) = |E(¢, 0; g)| to be our estimate t§ = |E|, which is the data we are trying to fit
by determining; = (d, §). Now it is clear that our objective function can be written in the
standard OLS form

N.
1 & .
J@)=- D Iy @) = il
$i=1

For simplicity of terminology, in this section alone, we will refer|t6;| as the data and to
|E(t;, 0; ¢)| as the simulations.

With the relative random noise described above we do not have constant variance, as is
demonstrated ifrigs. 16and17. Here we have plotted the residuat= |E(z;, 0; goLs)| —
|1§"i | against timet;, and also agains$E (¢;, 0; goLs)|. As one would expect with noise that is
relative in size to the signal value, we have a pattefrign 16that follows the pattern of the
original signalFig. 17demonstrates the fan shape associated with noise that is dependent
upon the size of the signal, i.e., nonconstant variance.

Since constant variance is most conveniently assumed in standard error analysis, we
further consider estimates obtained from an inverse problem applied to data with constant
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Fig. 16. Plots of the absolute value of the residyat | E(1;, 0; joLs)| — | E; | versus time; when the data contains
relative random noise.

variance random noise added. In particular, the data we now consider is generated by
Ej =E(.0.:q" + Bvnj.

where
nj~ A0, 1)

and the constarftis a scaling factor chosen simply so that the noise leyelyill somewhat
correspond to the parameterused in the previous section on relative noise. Specifically,
B = max E; /10 ensures thaf* in the constant variance cases is on the same order of
magnitude as those in the relative noise cases above for all choidesdb that we have
considered.

The variance of this data is

0% = S1FENS) = B2 InT] = BVY,

whereé& denotes the expectation. Therefore, we do have constant variance. Note further
the resulting lack of patterns iRigs. 18and19. The suspicious looking phenomenon of
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Fig. 17. Plots of the absolute value of the residuak |E(z;, O; goLs)| — |I§‘,<| versus the absolute value of the
electric fieldE (¢;, 0; goLs) when the data contains relative random noise.

many points on the lin& = 0 is simply because in the original ddtas very close to zero
most of the timeFig. 20demonstrates graphically the difference between relative noise
and constant variance noise. The relative noise case is particularly difficult in our inverse
problem since most of our initial estimates are based on accurately determining the peak
locations, yet this is exactly where most of the relative noise is concentrated.

With constant variance, and further, assuming that eadh identically independently
(normally) distributed, we have that (sg#) in the limit asN; — oo

goLs ~ N 2(qo, 581 LT (q0) L (qo)1™H).
Here¥(g) = % (¢) which is anN; x 2 matrix sinceg = (d, 6) and|E| is evaluated at

N, sample times. Also, the scale param@térs approximately given by

3=

Ny )
Y (E®,0; q0)| — |Ei]),

Ny —2 =
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Fig. 18. Plots of the absolute value of the residuat | E(7;, 0; goLs)| — |E,» | versus time; when the data contains
constant variance random noise.

In the above equationgg denotes the theoretical “true” value of the parameter that best
describes the system from which the datais taken. Note thatin this case, thisis not necessarily
the same ag* since the method used to generate the data is different from the forward solve
simulator. Thereforgg is generally unknown even in examples with simulated data.

As demonstrated in the previous sections,dqalrs is often a better minimizer than even
the original value ofy*, therefore we will approximatgg in the above equations ki, s.
In particular, if we denote the covariance matrix@s= 3[4 (g0)-%(q0)17%, then we

will approximateCo by C = 63, [#7 (doLs) ¥ (GoLs)] ™2, where

N,
1 ; R .
0ds= > Y (E(t. 0 Gos) — |Ei2.
Ny, — 2 P}

We compute%LS by multiplying our Jmin by an appropriate conversion factor, since they
are defined in a similar manner. However, in order to compute the partial derivatives with
respect tod andd in . we employ forward differencing, which requires an additional
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Ir(@)l vs le(@)l, (r(a)= |e(q)|-lehat])
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Fig. 19. Plots of the absolute value of the residyak |E(z;, 0; doLs)| — | E;| versus the absolute value of the
electric fieldE(1;, 0; goLs) when the data contains constant variance random noise.

forward simulation for each;. Forg = goLs we have, for example

Sy = JE| (15.0:6) ~ |E(#, 0; [q1, g2D)| — |E(fi, 0; [(1 — ha)q1, g2))|
dq1 haq1
and similarly for eachl¥”;». In our computations we used the relative differencing factor of
hq =1 x 10~4. One could also use a sensitivity equations approach (e.gi1kaad the
references therein), but since the variational equations are quite difficult to solve for this
example, we choose instead to approximate the partials with respepdirtectly with our
simulations.

We also need to point out that while taking the absolute value of a function limits dif-
ferentiability at a small number of points, the derivative does exist almost everywhere. The
absolute value function does not change the magnitude of the derivative where it exists,
which is what we need to compute the dot productoiwith itself. By using finite dif-
ferences to estimate derivatives, we are essentially under-estimating at the discontinuities.
Under-estimating a few points out of thousands is not going to significantly change our
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Fig. 20. The difference between data with relative noise added and data with constant variance noise added is
clearly evident whelk is close to zero or very large.

Table 5

Confidence intervals for the OLS estimatedaihen the data is generated with no noise (kg5 0.0)

o d* = .02 (N = 2049 d* = .04 (N = 4096

.0002 (2.00005:+ 9.30284x 10~ 7) x 1072 (4.00013+ 1.62162x 1076) x 1072
.0004 (2.00001:+ 6.50411x 10~ 7) x 102 (4.00001+ 1.19064x 10~%) x 1072
.0008 (2.00001+ 4.91232x 10~ 7) x 102 (4.00002+ 9.05240x 10~ 7) x 102

covariance matrix. (Alternatively, one could have defined the objective function by squar-
ing the signals instead of taking absolute values to avoid this problem. In this research we
were interested in comparing and.J in previous sections above and changing the scale
of E by squaring it would have prevented this.)

With & calculated, we can now evaluate= o3 [ (GoLs)¥ (GoLs)] L. Then the
standard error fog; = d is estimated by/C11 while the standard error fay, = § is
estimated by/C>,. SeeTables 5-1Zor confidence intervals relating to varioa$, 5* and
v, values. For example, in the caseddf=.02,5* =.0002 and withv, = .01 our covariance
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Table 6

Confidence intervals for the OLS estimatedaihen the data is generated with noise leyek .01
1

d* =.02(N =2048 d* = .04 (N = 4096

.0002 (2.00004- 4.86952x 106) x 102 (4.00013+ 5.69385x 107%) x 1072
.0004 (2.00001:+ 3.50259x 10~6) x 102 (4.00001+ 4.02428x 107%) x 1072
.0008 (2.00001+ 2.87772x 106) x 1072 (4.00001+ 3.32933x 107%) x 1072

Table 7

Confidence intervals for the OLS estimatedafzhen the data is generated with noise leyek .05
0

d* = .02 (N = 2048 d* = .04 (N = 4096

.0002 (2.00004 2.41541x 1072) x 1072 (4.00014 2.76640x 107°) x 1072
.0004 (2.00000-+ 1.68896x 1075) x 102 (4.00001+ 1.90853x 1075) x 102
.0008 (2.00003+ 1.40398x 1075) x 102 (4.00000- 1.60390x 10~5) x 102

Table 8

Confidence intervals for the OLS estimatedaihen the data is generated with noise leyek .1
0

d* = .02 (N = 2048 d* = .04 (N = 4096

.0002 (2.00000 4.72903x 1072) x 10~2 (4.00014:+ 5.48283x 107°) x 10~2
.0004 (2.00003+ 3.39327x 1075) x 102 (4.00002+ 3.87474x 107°) x 102
.0008 (2.00003+ 2.79911x 10°5) x 102 (4.00003+ 3.19526x 107°) x 102

Table 9

Confidence intervals for the OLS estimatedof’hen the data is generated with no noise (e 0.0)
0

d* = .02 (N = 2048 d* = .04 (N = 4096

.0002 (1.99272+ 0.000182978 x 104 (1.98142+ 0.000317616 x 104

.0004 (4.00035+ 0.00020188% x 1074 (4.00737+ 0.000369841 x 1074

.0008 (7.99833+ 0.000136586 x 1074 (8.00332+ 0.000251291 x 1074
Table 10

Confidence intervals for the OLS estimatedofrhen the data is generated with noise leyek .01
0

d* = 02 (N = 2048 d* = .04 (N = 4096

.0002 (1.99410+ 0.000958274 x 10~4 (1.98029+ 0.00111475 x 10~4
.0004 (4.00170+ 0.00108740 x 104 (4.00667+ 0.0012499 x 10~4
.0008

(7.998824+ 0.000800042 x 10~4 (8.00486+ 0.000923838 x 10~4
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Table 11

Confidence intervals for the OLS estimatejofrhen the data is generated with noise leyek .05

0 d* =.02(N = 2048 d* = .04 (N = 4099

.0002 (1.99606+ 0.00475672 x 10~4 (1.98106+ 0.00541764 x 10~4
.0004 (4.00190+ 0.00524360 x 104 (4.01214+ 0.00593246 x 10~4
.0008 (7.990454+ 0.0039118) x 10~4 (8.00947+ 0.00444525 x 104
Table 12

Confidence intervals for the OLS estimatejofrhen the data is generated with noise leyek .1

0 d* = .02 (N = 2048 d* = .04 (N = 4096

.0002 (2.00017+ 0.0093270) x 104 (1.97674+ 0.0107203 x 104
.0004 (4.00070+ 0.0105333 x 104 (4.01229+ 0.0120445 x 104
.0008 (7.99698+ 0.00778563 x 104 (8.00361-+ 0.00886925 x 104
matrix is

c | 237122x 10715 —4.43815x 10715
T | —4.43815x 107 9.1829x 10715 |°

which results in the confidence intervalse (2.00004+ 4.86952x 10%) x 102 and
d € (1.9941+ 0.000958274 x 1074,

The width of these bounds at0.000243471% and-0.0480555% of the approximation
value respectively. For th&* = .02 case, the average size of the confidence intervals for
v, = .01, .05, .1 respectively were=.0002% 4-.001% =£-.002% (averaged over variod$
values ranging fron0001 t0.0008). It is interesting that the widths of the confidence inter-
vals nearly exactly double, on average, when the noise level doubles. FBrth®4 case
the average size of the confidence intervals we@001% +.0006% +.001%. Likewise,
when the widths of the confidence intervals §r= .0002 are averaged over several var-
iousd* values (02, .04, .08) we get+.05999% +.2883% +.5718% forv, = .01, .05, .1
respectively. Fob* = .0004 the averages a#e03331% +.1575% +.3154%. In general,
largerd* andé* values have smaller (tighter) confidence intervals. This suggests that the
approximations found in these cases are better than those estimating small parameters.
While this is intuitive, it is not apparent looking at the estimates themselves or even the final
objective function values (see, for examplable 4.

6. Conclusion

In this presentation, we have explored a “proof of concept” formulation of an inverse
problem to detect and characterize voids or gaps inside of, or behind, a dielectric medium.
We have simplified the problem to one dimension and used Maxwell’s equations to model
a pulsed, normally incident electromagnetic interrogating signal. We use finite element
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discretization in space, and finite differences in time, to simulate the electric field in the
time domain. This is coupled with a Levenberg—Marquardt scheme in an optimization step
with an innovative cost functional appropriate for reflected waves where phase differences
can produce ill-posedness in the inverse problem when one uses the usual ordinary least
squares criterion. We have successfully demonstrated that it is possible to resolve gap widths
on the order of .2 mm between a dielectric slab of 20 cm and a metal (perfectly conducting)
surface using an interrogating signal with a 3 mm wavelength.

Future work on this problem will likely involve more efficient computational methods
since currently the inverse problem involving a 20 cm slab takes 10 h. Further, more sophis-
ticated models for describing the polarization mechanisms in non-homogeneous materials
must be developed. Finally, in order to take scattering and non-normally incident electro-
magnetic signals into account, multi-dimensional models will be necessary.
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