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Abstract

We apply an inverse problem formulation to determine characteristics of a defect from a perturbed
electromagnetic interrogating signal. A defect (gap) inside of a dielectric material causes a disrup-
tion, via reflections and refractions at the material interfaces, of the windowed interrogating signal.
We model the electromagnetic waves inside the material with Maxwell’s equations. This leads to a
non-standard, nonlinear optimization problem for the dimensions and location of the defect. Using
simulations as forward solves, we employ a Newton-based, iterative optimization scheme to a novel
modified least-squares objective function. Numerical results are given in tables and plots, standard
errors are calculated, and computational issues are addressed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem we consider is that of detecting a gap inside of a dielectric material using
high frequency electromagnetic interrogation. The idea is to observe the reflected and/or
transmitted signals and use the data to solve an inverse problem to determine certain char-
acteristics of the gap, e.g., location and/or width. Possible applications of this procedure
include quality assurance in fabrication of critical dielectric materials, or damage detection
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in agingmaterials for safety concerns. Further applicationsof electromagnetic interrogation,
as well as additional problem formulations and solutions, can be found in[2].
Theparticularmotivation for this research is thedetectionof defects in the insulating foam

on the fuel tanks of the space shuttles in order to help eliminate the separation (delamination)
of foam during shuttle ascent. To this end we address the problem of detecting a single
gap formed between a dielectric medium and a supra-conducting backing representing the
foam and the metallic tank, respectively. However, first we develop our methodology on
the slightly simpler problem of a gap formed in the interior of the foam (void), where for
simplicity, we ignore the reflections from the back boundary (i.e., we impose absorbing
boundary conditions instead). We also allow for the possibility in this case that the foam
has been removed for testing, and therefore we are able to place sensors both on the front
and back sides of the foam.
To be applicable to real world problems we must eventually be able to solve these in-

verse problems with length scales on the order of 20 cm for the thickness of the foam,
.2mm for the width of the gap, and a wavelength of about 3mm. This wavelength corre-
sponds to a frequency of 100GHz, which is the lower end of the terahertz frequency range
(.1∼ 10×1012Hz). The rationale for using this choice of frequency is that higher frequen-
cies are significantly attenuated in the materials which we are interested in interrogating.
Lower frequencies (larger wavelengths) have less resolution in detecting small gaps, and
are less capable of sharply distinguishing between air and foam which may have a high
air content.
First we simplify the problem by considering a linearly polarized, pulsed interrogating

signal which reduces the problem to one spatial dimension.We then define an inverse prob-
lem for determining the gap’s dimensions. We assume that we have data from sensors,
located in front of and/or behind the material, that record the electromagnetic signal af-
ter it is reflected from (or passes through) the material interfaces. We compute simulated
signals with approximations to the gap’s characteristics and apply an optimization routine
to a modified least squares error between this simulated signal and the given data. In our
computations we use Maxwell’s equations and a Debye polarization equation to model the
signal, and solve these equations using a finite elementmethod in space and finite difference
methods in time. Thus the optimization routine finds those gap characteristics which gener-
ate a simulated signal that most closely matches the given data. In this sense we determined
an estimate to the “true” gap characteristics.
In Section 2 we define the equations that we have chosen in order to model the elec-

tromagnetic waves inside the material. We further distinguish between two problem types
that we will address (denoted asProblems1 and 2). Section 3 contains the details of our
numerical methods for the simulations. We introduce the inverse problem formulation for
Problem1 in Section 4, and later improve upon it in Section 4.2. Numerical results of the
inverse problem are displayed in Section 4.3.
In Section 5 we begin addressingProblem2. Similarities and differences between the

computational issues between the two problems are pointed out. A more sophisticated
optimization method is described in Section 5.3 and associated numerical results are given
in Section 5.5. In Sections 5.5.1 and 5.5.2 we explore the effects of adding random noise
to the data, both relative and constant variance. In the latter, we compute standard error
estimates.
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Fig. 1.Problem1: dielectric slab with a material gap in the interior. Possible sensors in front and behind.
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Fig. 2. The domain of the material slab:�= [z1, z4].

2. Problem description

We interrogate an (infinitely long) slab of homogeneous nonmagnetic material by a
polarized, windowed signal (see[2] for details) in the THz frequency range (seeFig. 1).
We assume a wave normally incident on a slab which is located in�= [z1, z4] with faces
parallel to thex–y plane (seeFig. 2). Note that we employ the “method of mappings” (see
[2]) in our computations, therefore we may assume 0<z1<z4<1.We denote the vacuum
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outside of the material by�0. The electric field is polarized to have oscillations in thex–z
plane only. Restricting the problem to one dimension, we canwrite the electric andmagnetic
fields, �E and �H respectively, as follows:

�E(t, �x)= îE(t, z)

�H(t, �x)= ĵH(t, z),

so that we are only concerned with the scalar valuesE(t, z) andH(t, z).
Maxwell’s equations[5] then become:

�E
�z
=−�0

�H
�t

, (1a)

−�H
�z
= �D

�t
+ �E + Js, (1b)

whereD(t, z) is the electric flux density,�0 is the magnetic permeability of free space,� is
the conductivity, andJs is a source current density (determined by our interrogating signal).
We take the partial derivative of Eq. (1a) with respect toz, and the partial of Eq. (1b) with

respect tot. Equating the�
2
H

�z�t terms in each, and thus eliminating the magnetic fieldH, we
have:

E′′ = �0(D̈ + �Ė + J̇s),

(where′ denoteszderivatives anḋ denotes time derivatives).
Note that we have neglected magnetic effects and we have let the total current density be

J = Jc + Js , whereJc = �E is the conduction current density given by Ohm’s law in the
material.
For our source current,Js , we want to simulate a windowed pulse, i.e., a pulse that is

allowed to oscillate for one full period and then is truncated. Further, we want the pulse to
originate only atz= 0, simulating an infinite antenna at this location. Thus we define

Js(t, z)= �(z) sin(�t)I[0,tf ](t),

where� is the frequency of the pulse,tf = 2�/� is fixed, I[0,tf ](t) represents an indi-
cator function which is 1 when 0� t� tf and zero otherwise, and�(z) is the Dirac delta
distribution.

Remark 1. Computationally, having a windowed signal introduces discontinuities in the
first derivatives which are not only problematic in the numerical simulations (producing
spuriousoscillations), but arealsoessentially non-physical.Therefore inour implementation
we actually multiply the sine function by an exponential function (see[3] for details) rather
than the traditional indicator function. However, for notational consistencywewill continue
to denote this function asI[0,tf ](t).

The electric flux density inside the material, given byD = �0�∞E + P , is dependent
on the polarization,P. Note that�0 is the permittivity of free space and�∞ is the relative
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permittivity in the limit of high frequencies. For computational testing we assume for this
presentation that the media is Debye and thus we use the following polarization model
inside�:

�Ṗ + P = �0(�s − �∞)E,

where�s is a static relativepermittivity and� is a relaxation time.WealsoassumeP(0, z)=0.
Note that in the vacuum outside of�, P = 0.

In order to representD in the entire domain, we use the indicator functionI� which is 1
inside� and zero otherwise. Thus

D = �0E + �0(�∞ − 1)I�E + I�P.

In order to have a finite computational domain, we impose absorbing boundary conditions
at z= 0 andz= 1, which are modeled as

[Ė − cE′]z=0 = 0,

[Ė + cE′]z=1= 0.

With these boundary conditions, any boundary incident signal passes out of the computa-
tional domain, and does not return, i.e., we force it to be absorbed by the boundary. Also
we assume zero initial conditions, i.e.,

E(0, z)= 0,

Ė(0, z)= 0. (2)

Thus our entire system can be written

�0�0(1+ (�∞ − 1)I�)Ë + �0I�P̈ + �0�I�Ė − E′′ = −�0J̇s in � ∪ �0,

�Ṗ + P = �0(�s − �∞)E in �,
[Ė − cE′]z=0 = 0,

[Ė + cE′]z=1= 0 (3)

with (2) and

Js(t, z)= �(z) sin(�t)I[0,tf ](t). (4)

Classical solutions to (3) should not be expected due to thewindowed interrogating signal
and the discontinuous dielectric parameters across interfaces. For this reason, and also to
enable the application of the finite element method, we prefer to convert (3) to weak form
using spacesH = L2(0,1) andV = H 1(0,1). Substituting�r = (1+ (�∞ − 1)I�) and
�d = �s − �∞ results in the following weak system

〈�0�0�r Ë,	〉 + 〈�0I�P̈ ,	〉 + 〈�0�I�Ė,	〉 + 〈E′,	′〉
− 1

c
Ė(t,1)	(1)+ 1

c
Ė(t,0)	(0)=−〈�0J̇s ,	〉,

〈�Ṗ ,	〉� + 〈P,	〉� = 〈�0�dE,	〉�, (5)
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Fig. 3. The domain of the material slab with an interior gap betweenz2 andz3:�={z|z1�z�z2 or z3�z�z4}.

with (2) and (4). Note that〈·, ·〉 is modified from the traditionalL2 inner product due to the
aforementioned use of the “method of mappings” (see[2]). Existence and uniqueness of
systems of this type are treated in[2].
In this formulation we have initially assumed a single slab of a dielectric contained in

� = [z1, z4]. Thus I� = 1 if z1<z<z4, and zero otherwise. We now introduce a gap
consisting of a vacuum in the interior of the material as depicted inFig. 3. If the gap is
located in(z2, z3) then we redefine�= {z|z1�z�z2 or z3�z�z4}. We will refer to this
formulation asProblem1 (recallFig. 1). Note that it is not necessary to enforce additional
conditions at the interfaces as they are natural interface conditions and are implied within
the weak form of the system. Later we will discuss a second problem formulation,Problem
2, where the gap is between the dielectric slab and ametallic (supra-conducting) backing, as
shown inFig. 4. This will require slightly different boundary conditions (reflecting instead
of absorbing atz=1, where themetal backing begins), but otherwise the numerical solution
methods and analysis are the same.

3. Numerical solution

3.1. Finite elements

We apply a finite element method[6] using standard linear one-dimensional basis ele-
ments to discretize the model in space. LetN be the number of intervals in the discretiza-
tion of z, andh = 1/N , then the finite element discretization has an order of accuracy of
O(h2). For implementation we scale time byt̃ = ct and the polarization bỹP = P/�0 for
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Fig. 4.Problem2: dielectric slab and metallic backing with a gap between. Possible sensors only in front.

convenience. The resulting system of ordinary differential equations after the spatial dis-
cretization is the semi-discrete form

�rMë +M�p̈ + (
0�M
� +D + B)ė +Ke = 
0J, (6a)

M�ṗ + �M�p = �d�M�e, (6b)

where� = 1
c� , and
0 =

√
�0/�0. Also e andp are vectors representing the approximate

values ofE andP, respectively, at the nodesz̃i = ih. The mass matrixM has entries

Mij = 〈	i ,	j 〉 :=
∫ 1

0
	i	j dz,

where{	i}Ni=1 are the basis functions (M� is themassmatrix integrated only over�), while
the stability matrixK has entries

Kij = 〈	′i ,	′j 〉 :=
∫ 1

0
	′i	

′
j dz.

The matricesD andB result from the boundary conditions where

D1,1= 1,

BN+1,N+1= 1

and all other entries are zero. Finally,J is defined as

Ji =−〈	i , J̇s〉 := −
∫ 1

0
J̇s	i dz.

Note that by differentiating (6b) we can substitute into (6a) and obtain an equation only
dependent explicitly onP (two substitutions are required to eliminateP̈ andṖ ):

�rMë + (
0�M
� +D + B + �d�M�)ė + (K − �d�

2M�)e + �2M�p = 
0J.



388 H.T. Banks et al. / Nonlinear Analysis:Real World Applications 6 (2005) 381–416

Using shorthand we can write our entire coupled system as

M1ë +M2ė +M3e + �2p̄ = 
0J, (7a)

˙̄p + �p̄ = �d�M�e, (7b)

wherep̄=M�p. It is important to mention that each matrix is tridiagonal due to the choice
of the linear finite elements.

3.2. Finite differences

In order to solve the semi-discrete form of our equations we consider two distinct finite
differencemethods. In the firstmethodwe convert the coupled second order systemof equa-
tions into one larger first order system and simply apply a theta method (unless otherwise
stated, we use�= 1

2). In the secondmethodwe solve first for the polarization with a forward
differencing scheme using the initial conditions and then use that to update a second order
central difference scheme for the magnitude of the electromagnetic field. We then continue
this process iteratively, alternating between solving forP and forE.
Bothmethods are second order in time and space for appropriately smooth data (and with

�t =O(h)). We have compared the errors and the run times of the two methods for several
smooth test problems and have determined that the second method is as accurate, but twice
as fast, as the first in all cases primarily due to the fact that the linear system is of smaller
dimension in the second method. Also, the first method incidentally solves forė in addition
to eandp, which is superfluous.
In our secondmethodwe use a second order central difference scheme to solve (7a). Thus

we must first find an approximation toE(t1, z) whereti = i�t . Note that approximatingE
with its Taylor expansion aroundt0 = 0 and applying the initial conditions and ODE, one
obtains

E(t1, z) ≈ −�t2

2
�0J̇s(0, z).

Our approach is to first solve for̄p using a�-method, and then use that approximation
to solve foreat the next time step. Thus, our finite difference approximation for (7b) is

p̄n+1= p̄n + ��t
1+ ��t�

(�dM�en+� − p̄n), (8)

where[en]j =E(tn, z̃j ), [p̄n]j =M�P(tn, z̃j ), z̃j = jh, anden+�= �en+ (1− �)en+1 is a
weighted average ofen anden+1 for relaxation to improve the stability of the method. Once
we havep̄n+1 we can solve foren+2. Applying a second order central difference method
with averaging to (7a) gives

A1en+2= A2en+1+ A3en + �t2
0Jn+1− �2�t2p̄n+1. (9)

Note that in this caseA1 is tridiagonal and the matrix is the same for each time step, so we
may store the Crout LU factorization and use back substitution to solve the system at each
time step. For tridiagonal matrices the factorization and the back substitution are both order
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Fig. 5. Computed solutions at different times of a windowed electromagnetic pulse incident on a Debye medium
with a gap.

O(N). See[3] for computational issues encountered in implementation, including the use
of the method of maps to allow for gap sizes (�) smaller than the mesh size (h).

3.3. Numerical simulations

The following figure depicts the numerical solution of the amplitude of the electric field
at various times (Fig.5). We considered a Debye medium with the following parameters:

�s = 78.2,

�∞ = 5.5,

�= 1× 10−5,
�= 3.16× 10−8,
f = 2GHz,

and a material gap located at[z3, z4] = [.6, .61].
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We have used 2GHz simply so that our computational domain ofz ∈ [0,1] would not
have to be scaled for this demonstration.Also, in practice, one would not compute a domain
so much larger than the material, just as in an experiment the sensors should be as close to
the material as possible to reduce noise. We did so here merely so that the full wavelength
of the signal would be visible. See[3] for figures showing the signal recorded at receivers
located atz= 0 andz= 1.

4. Problem 1

We now apply an optimization routine to the least squares error between a simulated
signal and the given data to try to determine the gap characteristics. In particular we will
be trying to find the depth,d := z2− z1, and the width,� := z3− z2, which will produce a
simulated signal most closely similar (in the least squares sense) to the data. Existence and
continuous dependence of inverse problems of this type are addressed in[2].

4.1. Inverse problem

All of the following are solved with respect to a reference problem (R1) with these
parameter values (see alsoFig. 3):

z0 = 0, z1= .2, z2= .3, z3= .5, z4= .8, z5= 1.0,
f = 4GHz,tf is one period,
�= 8.1× 10−12,�= 1× 10−5, �s = 80.1, �∞ = 5.5 in the material,
N = 1024, Nt = 12926.
The sample rate for the data is one sample persr = .05ns
Thecorrespondingvaluesof(d, �)are(.1, .2).With this choiceof parameters, the forward

solve solution atz = 0 clearly shows distinct reflections from thez1, z2, andz3 interfaces.
This clear distinction will aid in our approximating the initial guesses, thus making this a
relatively easy sample problem.

4.1.1. Initial guesses
Assuming the physical parameters are given (either knownor fromaprevious estimation),

we want to determine the depth of any gap (d), and the width of that gap (�), using reflection
and/or transmission signals. First we attempt to get very close approximations tod and�
using information about the travel times of the data signal, thenwe use these values as initial
guesses in the optimization routine. See[3] for a complete discussion of the methods used
in determining initial estimates.

4.1.2. Optimization of least squares error
With initial estimates tod and� established, we define our inverse problem to be: find

q = {d, �} ∈ Qad such that the following least squares error between the simulation and
the observed data is minimized:

J (q)= 1

2MS

M∑
j=1

S∑
i=1

(E(ti , z
O
j ; q)− Êij )

2. (10)
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Here theÊij aremeasurements of the electric field taken atM specific locations (e.g.,zO1 =0
and/orzO2 =1) andSdistinct times (e.g., everysr=0.06ns). TheE(ti, zOj ; q) are solutions

of the simulations evaluated at the same locations and times corresponding to the data,Êij ,
and using parameter valuesq. The setQad is the feasible set ofq values determined such
thatd and� are realistic (e.g. positive).
We apply an inexact Gauss–Newton iterative method to the optimization problem. That

is, we re-write the objective function as

J (q)= 1

2MS
RT R,

whereRk = (E(ti , z
O
j ; q) − Êij ) for k = i + (j − 1)M is the residual. To update our

approximation toqwe make the Inexact Newton update stepq+ = qc + sc where

sc = − (R′(qc)T R′(qc))−1∇J (qc)
= − (R′(qc)T R′(qc))−1R′(qc)T R(qc)

is the step,qc is the current approximation, andq+ is the resulting approximation. This is an
inexact method because we have disregarded theSHessians of(E(ti , zOj ; q)− Êi), which
is generally acceptable for small residual problems[7].
In this simple case we have a 2× 2 matrix inverse, so we can compute it explicitly. Each

iteration requires one function evaluation and a forward difference gradient, which is two
additional function evaluations (since we have two parameters). Each function evaluation
is equivalent to a simulation. Therefore we want as few iterations as possible.

4.1.3. Convergence
Initial testing (withz= 0 data only) shows convergence to eight decimal places of each

parameter in six iterations of Gauss–Newton with initial guesses having at most 5% relative
error in� and 2% ind. The algorithm does not converge to the correct solution if the initial
guess ford has 5% relative error or if the initial guess for� has 10% relative error.
One reason that the algorithm fails to converge is that this objective function is poorly

behaved. InFig. 6we show a plot of the objective function with respect to�. The two very
large peaks inJon either side of the exact minimizer are due to the simulated solution going
in and out of phase with the exact solution. For this example, the simulated solution is most
out of phase with the exact solution at�= .181 and�= .219 (i.e., approximately�∗ ± �

4),
which correspond to the first and second peak inJ, respectively. The same phenomenon
occurs in theddirection, for the same reasons. See[3] for a thorough demonstration of this
behavior.
Very few optimization routines can provide convergence without initial conditions be-

tween the twopeaks inJ. Theeffective convergence region for this objective functionapplied
to this problem (with or without observations atz = 1) is within about 8% of the actual
value of� whend is exact and within about 7.5% of the actual value ofdwhen� is exact.

Note also that the convergence region is very dependent on the frequency of the
interrogating signal; for higher frequencies, the region is even smaller. This is because
the distance between the two peaks inJ is linearly dependent on�, the wave length of
the interrogating signal. This has profound implications for our desire to interrogate with
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Fig. 6. Nonlinear least squares objective function versus� for a small range of� values (data atz= 0 only).

signals in the Terahertz range. There are also peaks inJ with respect tod as well, for the
same reasons.
Further, this is considering only a one parameter minimization problem with the other

parameter held fixed at the exact solution. Convergence is much worse for the actual two
parameter problem. In fact, in the full surface plot ofJ, a diagonal “trench” occurs approx-
imately along the line

d =− 1

2.3
(�− �∗)+ d∗, (11)

(where∗ denotes the exact solution). This phenomena is further explained, and depicted in
various figures, in[3].

4.2. An improved objective function

As demonstrated above, the usual Nonlinear Least Squares objective function when plot-
tedwith respect to eitherdor� has two large peaks inJon either side of the exactminimizer.
The reason for these peaks inJ is that the simulated solution goes in and out of phase with
the data asdor� change.When they are precisely out of phase, there is a very large absolute
error, which when squared, causes the objective function to have large peaks. Therefore,
one solution is to not consider the absolute error, but instead the error of the absolute values,
i.e., the following objective function:

J2(q)= 1

2MS

M∑
j=1

S∑
i=1

(|E(ti, zOj ; q)| − |Êij |)2. (12)
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Fig. 7. Our modified nonlinear least squares objective function (J2) versus� for a small range of� values. The
dotted lines represent the delta values that will be tested if a local minimum is found.

This non-standard mechanism will prevent the fact that the signals go in and out of phase
with each other from having an impact on the objective function, since positive magnitudes
cannot cancel each other out. Therefore it gives a more accurate measure of the difference
between two signals. Note that the orientation of the interrogating signal (e.g., peak first)
precludes the possibility of a solutionE from having the same magnitude but opposite sign
asÊ. Further, note thatJ2(q) is not differentiable on a set of measure zero; this is very
unlikely to affect the finite difference computations of the gradients, and did not present
problems in our numerical testing. We plotJ2(q) versus� in Fig. 7. See[3] for other plots
including surface plots asJ2 varies overd and�.

Note that while we have effectively eliminated the peaks on either side of the exact
solutions, in essencewe havemerely converted them to localminima! But, since theminima
occur for the same reasons the peaks inJhad been occurring, they occur at the same values
of �. Note that we can see from plotting the signals that they were exactly out of phase when
they were shifted by�4, where� is the wavelength of the interrogating signal. Therefore�
is off by �

4. Since we determine the frequency of the interrogating signal, this is a known
quantity, and we can predict where these local minima will occur a priori!
Most optimization routines will continue until they find a local minimum, and since the

two falseminima described above are at least close to “predictable” locations, we can easily
test on either side of any detectedminimum to determine if it is in fact global. IfJ2 is less at a
fixed distance in the� direction (e.g.,�4) on either side of a detected minimum, i.e., at either
test locationof the local minimum, we restart Gauss–Newton at the new best guess. Thus
if either of the two local minima described above is found, we will eventually have global
convergence if one of theirtest locationsare sufficiently close to the global minimizer.
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To graphically demonstrate this approach, we have added dotted and dash-dotted lines to
the graph ofJ2(�) in Fig. 7to represent the test values of the first and second local minima,
respectively. One can clearly see that if either local minimum is detected, the test value
either to its right if it is the first one, or to its left if it is the second, will give a smallerJ2 and
should eventually lead to the global minimizer being detected. Using this method we have
in principle increased our convergence region to about 25% of� whend is exact. The same
approach works for thed direction, increasing its convergence region from about 7.5% to
about 15% when� is exact.
Other possiblemodifications to the least squares objective function having similar effects

include squaring the signal instead of taking the absolute value (thus preserving smoothness
everywhere), or just halving the reference signal so that we only have a positive amplitude
to begin with. Each of these options will still have the local minima problems described
above, as well as their own unique disadvantages.

4.3. TestingJ2

In order to determine the limitations of an optimization routine to minimize our objective
functionJ2 in a more practical setting we examineJ2 versusq when error is present. In
particular we try both adding random noise to the data signal, as well as testing bad initial
guesses for� andd. It should be noted that in the tests reported on below we assume that
data atz= 1 is not available and used only observations atz= 0.

4.3.1. Sensitivity to initial guesses
ForJ2 described in (12), the objective function is more sensitive tod than to�, therefore

it is imperative that our initial guess ford is as good as possible. To give an idea of what may
happen if ourd estimate were not within the 15% our testing has determined is necessary,
we examined plots of the objective function versus� for three values ofd, which are 3%,
15%, and 30% off respectively (these are displayed in[3]). With errors greater than 15%
an erroneous global minimum appears for small� values. This occurs because the first
reflection of the data is not matched by the simulation, but the second reflection matches
it if � is small enough (see[3] for details and sample plots). It turns out that the distance
between the erroneous global minimum and the correct minimum is exactly�∗=0.2, which
is what would be expected. However, we cannot apply the same idea as before wherewe add
or subtract a fixed amount to test for other local minima, since for one, the “more optimal”
of the two is farther from the “true” solution, and also, we would have to know� in order
to add or subtract it (but� is what we are trying to estimate!).

4.3.2. Random observation noise
In order to test the feasibility of this procedure as anestimationmethod,wehaveproduced

synthetic data for our observationŝEi . In an actual experiment, one must assume that the
measurements are not exact. To simulate this we have added random noise to the original
signal. The absolute value of the noise is relative to the size of the signal. IfEi is the data
sampled, then we definêEi = Ei(1+ 
i ), where
i are independent normally distributed
random variables withmean zero and variance one. The coefficient determines the relative
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Table 1
Number of iterations and CPU time for Gauss–Newton given various relative magnitudes of random error

 d � J Iterations CPU time (s)

0 0.1 0.2 1.32319E-10 7 160
0.01 0.099994 0.199969 0.00792792 8 186
0.05 0.099974 0.199835 0.199489 13 291
0.2 0.099928 0.199204 3.04619 20 435

magnitude of the noise as a percentage of the magnitude ofEi , in particular, = 0.05
corresponds to 10% noise and= 0.025 to 5% noise.
Plots of the resulting objective functions for various values of ranging from 2% to 40%

are shown in[3]. Summarizing these results, we note that the structure of the curves is not
significantly affected, nor is the location of the global minimum. However themagnitude of
theminimumof theobjective function is increased,making InexactNewtonmethodsslightly
less reliable due to the larger residual. Still, our results show that the correct minima were
consistently found andwithin a reasonable amount of time. Select examples are summarized
in Table 1. Corresponding initial estimates ranged from, in the = 0 case,(d0, �0) =
(0.093689,0.20986) to, in the= .2 case,(d0, �0)= (0.109668,0.172385).

5. Problem 2

We next apply the most useful techniques obtained from investigations of Problem 1 to
a new formulation of the interrogation problem. In Problem 2 we consider a dielectric slab
and a metallic backing (conductor) with a possible gap between the two (seeFigs. 4and
8). Applications of this specific formulation included detecting delamination of insulation
from metallic containers, e.g., insulating foam on a space shuttle fuel tank. In order for this
numerical approach to be useful in this particular application we must be able to resolve a
gap of width .2mm inside of a slab with a thickness of at least 20 cm using a frequency of
100GHz.
Wewill again assume the samephysical parameters for our dielectric and consider the gap

as a vacuum. The variablesdand� are still the depth and the width of the gap, respectively.
One major difference is that in this problem we are only able to detect the electromag-
netic signal in front of the material. Also, since the metallic backing reflects much of the
signal, we have considerably more overlapping of the reflections to worry about. These
properties contribute to the fact that this formulation leads to a much more difficult inverse
problem. For this reason we will be using more sophisticated optimization routines includ-
ing a Levenberg–Marquardt parameter and implicit filtering. We will also need to develop
different approximation methods for our initial guesses.
The implementation of this problem has several minor differences from the previous one.

First, we now only need to represent two interfacesz̃1 and z̃2, with z̃0 and z̃3 being the
front and back computational boundaries, respectively. Thus now we define the depth of
the gap asd := z̃2 − z̃1 and the width as� := z̃3 − z̃2. Also, as previously mentioned,
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Fig. 8. The domain of the material slab with a gap between the medium and a metallic conductive backing:
�= {z|z1�z�z2}.

the conductive metal backing reflects the signal, and hence we must change our absorbing
boundary conditions atz=1 (for a finite computational domain), to an actual fixed, Dirichlet
boundarycondition (E=0).Wemustmodifyour finiteelementmatricesaccordingly, aswell.
Otherwise, the numerical method for simulation is the same as it was for Problem 1, namely
standard finite element methods for spatial derivatives, and an alternating implicit/explicit
centered difference time stepping scheme. Sample solutions are plotted inFig. 9.
We again define our inverse problem to be: findq := {d, �} ∈ Qad such that an objective

function representing the error between the simulation and the observed data is minimized:

min
q∈Qad

J (q).

Here the measurements of the electric field,Êi , are taken only atz=0, but still atSdistinct
times (e.g., every 0.06ps). The solutions of the simulations,E(ti,0; q), are evaluated at
the same location and times corresponding to the given data, and using parameter values
q. In lieu of actual data from experiments, we again create our observed data by using the
simulator, however, the only information that is given to the minimizer is the data observed
at z= 0, which we will denote byÊ.
The system that we use tomodel the propagation of the electric field, and thus simulate in

order to solve our inverse problem, is as follows, and includes the abovementionedDirichlet
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Fig. 9. Computed solutions at different times of a windowed electromagnetic pulse incident on a Debye medium
with a gap between the medium and a metallic conductive backing. The width of the slab isd = .02m and the
width of the gap is�= .0002 (barely visible at the far right of the gray region).

condition atz= 1:

�0�0(1+ (�∞ − 1)I�)Ë + �0I�P̈ + �0�Ė − E′′ = −�0J̇s in � ∪ �0,

�Ṗ + P = ��0(�s − �∞)E in �,

[Ė − cE′]z=0 = 0,

[E]z=1= 0,

E(0, z)= 0,

Ė(0, z)= 0,

with

Js(t, z)= �(z) sin(�t)I[0,tf ](t).

See Section 2 for a complete description.
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Fig. 10. Close up surface plot of least squares objective function demonstrating peaks inJ, and exhibiting many
local minima.

5.1. Objective function

As in the previous problem, we encounter difficulties when attempting to use the standard
least squares objective function to compute the error between the simulated signal and the
observed data. The constructive interference of peaks and troughs produces peaks inJ in
the objective function on all sides of the global minimum which make it nearly impossible
to find the solution in the middle. The peaks inJare clearly apparent inFig. 10. In contrast,
Fig. 11shows a surface plot of our modified least squares objective function

J2(q)= 1

2S

S∑
i=1
||E(ti,0; q)| − |Êi ||2.

It is clear, as before, that the initial guess is crucial to the success of any optimization
routine.Notice that althoughJ2 does not exhibit the familiar peaks inJof J1, it does however
still have many local minima, which are just as difficult to avoid in a minimization routine.
The local minima inJ2 for this problem occur approximately every�4 along the line

d =− 1√
�∞

�+ b.



H.T. Banks et al. / Nonlinear Analysis:Real World Applications 6 (2005) 381–416 399

0

1

2

3

4

x 103

0.016
0.018

0.02
0.022

0.024
0.026

0.028

0

50

100

150

200

250

de
lta

J2

depth

J

Fig. 11. Close up surface plot of modified least squares objective function demonstrating lack of peaks inJ, but
exhibiting many local minima.

This happens for the same reason as in Problem 1 (see[3] for details and illustrations).
Because we cannot eliminate these local minima, we must appeal to the procedure that
worked in the previous problem, namely testing “check points”. Since we know where
these local minima are occurring with respect to the global minimum, if our minimization
routine finds what it suspects to be a local minima, say(d1, �1), we simply check(d1 ±
��
4, �1∓ �

√
�∞ �

4), where�= 1/
√
1+ �∞. If we find a lower objective function value, we

restart our optimization routine at that “check point”.

5.2. Initial guesses

In spite of our faith in the “check point” method, we still desire to find the best initial
guesses for our optimization routine as possible so that we may hopefully find the global
minimum without restarting. As before, we use the travel time of the first trough to approx-
imate the location of the first interface. However, in this formulation we can take advantage
of some of the characteristics of the signals. For example, the first reflection off the gap is
always trough-first, and the second (as well as each subsequent reflection) is always peak-
first. For this reason, if we want to locate the first trough we can simply find the largest
peak (belonging to the second reflection) and back track. It is a very simple matter to find a
maximum or minimum of a vector of values. After the location of the largest peak is found,
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Fig. 12. The top plot represents several signals which may be observed in a simulation of Problem 2. The bottom
plot shows the sum of the top signals. The peak of the second signal is just beginning to be obscured by the first
when� becomes less than3�

8 . Thus the observable maximum is still a good approximation of the peak of the
second signal, and a trough to peak distance can be used to estimate�.

we back track to find theminimum in front of it, namely that belonging to the first reflection
off the gap. Then using the procedure described in Section 4.1, we approximate the root
immediately in front of this trough. That gives us the travel time for the first reflection off
the gap, which in turn gives us the depthd of the gap.
Finding� is, unfortunately, not nearly as straightforward.Thereare twomainpossibilities,

and therefore, two differing approaches to approximating�, depending on the nature of the
reflected signal. We consider the two cases:

(i) The leading trough of the first reflection and the second reflection are disjoint (i.e.,
�> �

8). In this case we can find the locations of the peak and trough and use the travel
time between the two to approximate�. We denote this approximation by�1. (Note
that the observed peak is not necessarily the same as the original peak unless�> 3�

8 ,
but it is still a good approximation). SeeFig. 12.

(ii) The second reflection partially truncates the trough of the first (i.e.,�< �
8). As a rough

approximation, we can assume that the location of the actual minimum (trough) is
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Fig. 13. The top plot represents several signals which may be observed in a simulation of Problem 2. The bottom
plot shows the sum of the top signals. The trough of the first signal is partially truncated by the second signal. In
this case the observed minimum is a still a good approximation to where the second signal begins. For smaller�,
a linear approximation must be used.

where the two signals begin to interfere with each other (the observable minimum).
SeeFig. 13. We denote this approximation by�4.

A more accurate method is to use triangles to approximate the two reflections. By
knowing the location of the maximum and minimum (peak and trough, respectively),
andalso thebeginningof the first signal (fromSection4.1) and the roughapproximation
to the beginning of the second signal using�4, we can estimate the slopes of the
two triangles with finite differences. Also note that since the two signals are added,
the observed root between the peak and trough in the combined signal is actually an
equilibrium point between the two signals. By setting equal to each other the two linear
approximations for each of the two signals, evaluated at the equilibrium point, we can
solve for the distance between the starting point of each signal, and thus for�3. See
Fig. 14. Specifically, let(p1, q1) be the location of the trough of the combined signal
and (p2, q2) be the location of the peak. Letr1 be the location of the root in front
of the trough, andr2 be the root between the trough and peak. Estimate the slope of
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Fig. 14. This schematic shows the roots, extrema, distances, and slopes used in the computation of�3.

the first signal,m1<0, using(p1, q1) andr1. Now if we lety = r2 − r1 and sayx is
the actual distance betweenr1 and the beginning of the second signal, then setting the
linear approximations equal in magnitude, but opposite in sign, atr2 yields

−m1y =m2(y − x).

Now we can estimate the slope of the second signal,m2>0, using (p2, q2) and
(r2,−m1y). Also, we can re-write the above equation as

x =
(−m1+m2

m2

)
y.

To find�3 we simply dividex by 2 and the (scaled) speed of light in the material, i.e.,√
�∞.

Since each of the two situations above is dependent on the parameter it is approximating,
wemust also determine which of the abovemethods ismost appropriate to use. Thus we use
the most precise of the available methods to determine the situation, i.e.,�4, instead of�3
since in general�3 underestimates� sowe do not want to use it as a criterion for determining
whether� is small. (Note that when� is indeed small,�3 is more accurate than�4.) The
estimate for�4 tends to be an overestimate, and is only valid if�< �

8. Unfortunately,�1
also tends to be an overestimate, so we prefer to only trust it entirely if it is larger than�

4.
If neither�1 nor �3 is a sufficient approximation we choose to use the average of the two,
and call it�2.
Therefore our algorithm for approximating� is as follows:

(a) If �4< �
8 then use�3
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(b) else if�1> �
4 then use�1

(c) else use�2 (average between�1 and�3).

We tested our approximating methods on exact depth (d) values of: .02, .04, .08, .1,
and .2m, and values of width (�): .0001, .0002, .0004, .0006, and .0008m. Since�

8 is the
transition point between the two situations, it is understandable why� close to this value
is the most difficult to accurately resolve. We chose this range of�’s because our choice of
frequency gives�8=3.7475×10−4m. See the tables in[3] for the initial estimates ofdand
�.
The approximations improve slightly as the number of finite elements is increased, and

appeared to converge to fixed values. This suggests that numerical error (and instability)
can affect the estimates. For each case there is a significant amount of visible numerical
error in the simulations below a certain number of elements, therefore in approximating�
we chose to use the number of elements just above the threshold.
While the initial estimates were relatively inaccurate, some� approximations being al-

most 100% off from the true solution value, in the numerical tests we performed, all the
initial estimates were sufficiently close to the true, global minima as to not cause the op-
timization routine to result in a false, local minima. While our “check point” method is
available if needed, it is much more efficient to have an accurate initial estimate than to
restart after optimizing from a bad one. Still, the report[3] describes several very real
examples where the “check point” method would be a necessary last resort.

5.3. Optimization method

Now that we have approximated our initial guesses, we need to minimize the objective
function in order to solve the inverse problem. In Problem 1, Gauss–Newton was sufficient
to find the global minimum formost cases. In this formulation, however, wewill applymore
sophisticatedmethods, reverting toGauss–Newtonwhenever possible since its convergence
rate is best.
The first modification we make to Gauss–Newton is to add a Levenberg–Marquardt

parameter,c (see[7]). The Inexact Newton step becomes

sc =−(R′(qc)T R′(qc)+ cI )−1R′(qc)T R(qc).

The parameter adds regularization by making the model Hessian positive definite. The
method uses a quadratic model Hessian, and also has a built-in line search with a sufficient
decrease condition. The line search is based on the predicted decrease computed from the
quadratic model. If the actual improvement of the objective function,J, is close to the
amount predicted by the model Hessian after a step is taken, then the method decreases the
Levenberg–Marquardt parameter,c, effectively increasing the relative size of the next step,
which hopefully accelerates the convergence. Asc is decreased to 0 the method becomes
Damped Gauss–Newton (meaning Gauss–Newton with a line search). If, however, the
actual improvement ofJ after a step is not sufficient (or is even negative),c is increased,
effectively scaling back the Newton step, and we retest. If there are too many reductions
then we declare a “line search failure” meaning that too small a step is required to decrease
the objective function.
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Usually a method would exit after a line search failure, returning the best approximation
so far. But we use this failure to call an adaptive mesh size routine, i.e., an implicit filtering
technique. The idea is that the failure is likely due to the fact that the direction the finite
difference gradient chose is probably not an actual “descent direction” in the global sense.
In other words, the finite differencing is most likely differentiating noise. In the same
manner that a smooth surface may look rough under a microscope, using too small of
a differencing step amplifies effects from round-off error and other sources of numerical
noise. Our technique is to increase the relative differencing step,ĥ, recompute the gradients,
and then try the Levenberg–Marquardt method again. The relative differencing step,ĥ, is
such that the gradient,∇

ĥ
, of J (q)= J ([d, �]) is computed with

∇
ĥ
J ([d, �])=




J ((1+ĥ)d,�)−J (d,�)
ĥd

J (d,(1+ĥ)�)−J (d,�)
ĥ�


 .

We apply a similar approach to modifying the differencing stepĥ as we do for changing
c in that after a successful step we decreaseĥ, but if we have another failure we increase
ĥ even more. Since the convergence rates of gradient based methods are dependent on the
size ofĥ (for example Gauss–Newton is O(ĥ2)), we wantĥ to be as small as possible and
still be effective, similarly withc. We use a three tiered approach to changingĥ. Initially
we setĥ = 10−9. To increasêh we raise it to the23 power, to decrease we raise it to the32
power. Additionally we define 10−4 to be the maximum allowable differencing step value.
Thusĥ ∈ {10−9,10−6,10−4}.

In general an optimizationmethod exits with “success” if the norm of the current gradient
is less thantol times the norm of the initial gradient. However, in our method we do not
immediately trust the finite difference gradients, and instead call implicit filtering again
when the gradients appear small. When we have verified small gradients on all three scales
(the various values of the differencing stepĥ defined above), then we exit with “success”.

Remark 2. In practice, a very good solution is found within a couple of Levenberg–
Marquardt steps, and then an equal number of Implicit Filtering iterations verify, and some-
times enhance, this solution. In the interest of efficiency, and since this is a parameter
identification problem, we exit early with “success” if our objective function is satisfac-
torily small (i.e.,tol times the initial value), which can save on average about half of the
possible iterations.

Additionally we impose a restriction on the number of “pullbacks” on each linesearch,
and on the number of iterations, effectively limiting the total number of function calls. If a
small gradient has not been verified on all scales before exhausting the maximum number
of iterations, we exit with “failure”.

5.4. Numerical issues

For smallN thedifficult casesare thosewith largedepth.This is because thecomputational
domain is effectively increased when the depth is increased, making the mesh sizes larger
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and increasing the level of numerical error. The magnitude of� does not seem to have a
significant effect on the convergence of the method.
An obvious disadvantage to having a largeN is that each simulation takes much longer.

In general the total execution time is quadrupled when the number of elements is doubled.
This is consistent with the fact that complexity of the most time consuming part of the
simulation, the linear solves, is O(N), and the number of time stepsNt is also O(N). So
when we double the number of finite elements we are also doubling the number of time
steps. Therefore, we get an overall complexity of O(N2). Thus, as mentioned before, in our
inverse problem we choose to use the number of elements just above the threshold of when
numerical error is apparent.
We should also mention that in order to create data, in lieu of actual experimental data,

we perform a simulation at a higher resolution believing it to bemore accurate. Specifically,
we double the number of finite elements. Since the time step, and therefore the effective
sample rate if the time step is too large, are both dependent upon themesh size (refer to[3]),
the sample times of the simulated data do not necessarily correspond with the sample times
of the simulations at the lower resolution. (In general we have twice as many samples from
the higher resolution.) Thus in order to compute the modified least squares error between
the two vectors, we perform a linear interpolation of the simulated data onto the sample
times at the lower resolution. SeeFig. 15. Note that in the usual case where we simply
have twice as many sample points from the higher resolution simulation, we are in effect
discarding sample points rather than doing a true interpolation.
For comparison we compute the low resolution simulation using the valuesd∗ and�∗

(note that this is not the same as taking the high resolution simulation and interpolating it
onto the low resolution time steps,whichweactually use as our observed data). In every case
that we have tested,J, when computed with thedand� values found from the optimization
routine (dmin and�min), is less than or equal toJ when computed with the original values
(d∗ and�∗). This suggests that an actual global minimum of the objective function has been
found, even though the final estimates ofdand� themselves are not necessarily equal tod∗
and�∗. Note inFig. 15that the simulation using original values,(d∗, �∗), is in fact closer
to the original data, but the simulation using the minimizer values,(dmin, �min), is closer to
the interpolated data (see for example the[.335, .3352] interval).
Although we could compute our optimization routine at the same resolution as the sim-

ulated data to get a better fit in our tests, this would not properly represent the real-life
phenomenon of sampling data. Sampled data is inherently not a completely accurate repre-
sentation of a physical observation.We believe that our interpolation approach gives amore
realistic expectation of how our method would perform given actual experimental data. In
order to further test the robustness of our inverse problem solution method we introduce
random noise to the detected data in Section 5.5.

5.5. Numerical results

Tables 2and3 show the final computed approximations for the depth of the slab (dmin)
and the width of the gap behind it (�min). The relative differences from the original values
used to generate the data (d∗ and�∗), are: for depth, on the order of.0001 and for�, on
the order of.01. However, this does not imply that the optimization routine was unable to
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Fig. 15. Plotted are the actual simulated data (N = 2048), the interpolation of the simulated data onto the low
resolution sample times (N = 1024), the result of the minimization routine (N = 1024), and a low resolution
(N = 1024) simulation using the exact values ofd and�.

Table 2
The final estimates ofd

d �

.0001 .0002 .0004 .0006 .0008

.02 (N = 1024) 0.0200053 0.0200022 0.0200006 0.0200005 0.0200002

.04 (N = 2048) 0.0399948 0.0399974 0.0400005 0.0400005 0.0399999

.08 (N = 4096) 0.0799973 0.0799987 0.0800006 0.0800006 0.0800003

.1 (N = 8192) 0.0999945 0.0999974 0.1 0.1 0.0999999

.2 (N = 16384) 0.200011 0.200005 0.2 0.2 0.200001

find the optimal solution. Recall that since our data is generated with essentially a different
simulator than our forward solves, the original values do not necessarily minimize the
objective function. The objective function values give a better indicator of how well the
optimization routine works since it shows the fit to the generated data.Table 4shows the
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Table 3
The final estimates of�

d �

.0001 .0002 .0004 .0006 .0008

.02 (N = 1024) 9.40622e-05 0.000196754 0.000398642 0.000597275 0.00079707

.04 (N = 2048) 0.000106435 0.000203916 0.000394204 0.000592156 0.000793622

.08 (N = 4096) 0.000103585 0.000202273 0.000395791 0.000593861 0.000794401

.1 (N = 8192) 0.000106593 0.000203876 0.000396203 0.000594976 0.000795985

.2 (N = 16384) 8.7456e-05 0.000191808 0.00040297 0.000602902 0.00080129

Table 4
The objective function value of the final estimates

d �

.0001 .0002 .0004 .0006 .0008

.02 (N = 1024) 0.00786171 0.00906699 0.0115657 0.0233783 0.0447687

.04 (N = 2048) 0.021516 0.0343314 0.0514108 0.0700747 0.0927117

.08 (N = 4096) 0.0116105 0.0145428 0.0201004 0.0272513 0.0344458

.1 (N = 8192) 0.00304723 0.00547532 0.00779186 0.00931778 0.0118529

.2 (N= 16384) 0.000609258 0.00133978 0.00146975 0.000962975 0.000766141

final objective function values. In each of these cases, the final objective function value
(Jmin) was less thanJ ∗ := J (q∗). In fact, the ratiosJr := Jmin/J

∗ were on average.3008.
We consider anyJr <1 to represent a successful convergence.
Although� values that are near�8 = 3.7475× 10−4m are the most difficult for which to

obtain initial approximations, we see that the objective function values in these cases are
just as small (and the final estimates are just as close) as for other� values.
The execution time, in seconds, as well as the number of function calls, are given in[3].

While theabove tablesestablish thatwewereactually able to resolve the caseof 20 cmdepth,
therewas a pricewe had to pay. The average execution times for each of differentmesh sizes
(N =1024,2048,4096,8192, and 16384) were 39,248,1452,6229, and 35509 seconds,
respectively. Each represents an increase in time over the previous mesh size by a factor of
6.4,5.9,4.28, and 5.7, respectively. This is consistent with the fact that the forward solves
are order O(h2). However, the additional sample points for the largerN cases allowed for
smaller initial objective function values which resulted in increasingly more iterations to
satisfy the relative tolerance in our stopping criteria. This explains why we do not see ratios
closer to the expected 4 for order O(h2) methods.

5.5.1. Relative random noise
Weadd random noise to the signal, asmentioned above, in order tomore closely simulate

the experimental process in data collection. As in Section 4.3.2, we start with relative noise
where the absolute value of the noise is proportional to the size of the signal. IfEi is



408 H.T. Banks et al. / Nonlinear Analysis:Real World Applications 6 (2005) 381–416

the data sampled, then we defineÊi = Ei(1+ r
i ), where
i are independent normally
distributed random variables with mean zero and variance one. Again, the coefficientr
determines the relative magnitude of the noise as a percentage of the magnitude ofEi , in
particular,r = 0.01 corresponds to 2% noise. We tested relative magnitude levels of 2%,
10%, and 20% (corresponding tor = .01, .05, and.1 respectively). See[3] for tables of
initial estimates. In nearly all the cases the estimate was close enough for the optimization
method to converge (Jr <1) to the expectedminimum.The only exceptionswerewith=.1
and�= .0004, which are understandably the most difficult cases.
The final approximationsdmin and�min in the presence of noise are also given in[3].

Some approximations with high noise appear to be better approximations than some with
little or no noise. For example, with�∗ = .0001, d∗ = .04, ther = .1 final approximations
are an order of magnitude closer to the original values than ther =0 final approximations.
This is not to say that the noise helps the approximation method. Rather, it is for the same
reason that, for example, as shown inFig. 15, the actual parameter values produced a signal
farther away (in the least squares sense) from the generated data than a signal computedwith
the approximated parameter values. The resulting objective function values give a better
indication of the accuracy of the approximation to the data. The final objective function
values corresponding tor =0 were two orders of magnitude smaller on average than those
resulting fromr=.1. Thus, it is clear that the datawithout noise ismore accuratelymatched
by its approximations than those with noise.

5.5.2. Standard error analysis
In an actual inverse problem using data collected by experiment, one desires to have

confidence intervals on all parameter estimates. We will apply standard error techniques to
an ordinary least squares (OLS) formulation of our problem to obtain confidence intervals
on our estimates. In order to rewrite our objective function in anOLS formulation, we define
y(t; q) = |E(t,0; q)| to be our estimate tôy = |Ê|, which is the data we are trying to fit
by determiningq = (d, �). Now it is clear that our objective function can be written in the
standard OLS form

J (q)= 1

Ns

Ns∑
i=1
|y(ti; q)− ŷi |2.

For simplicity of terminology, in this section alone, we will refer to|Êi | as the data and to
|E(ti,0; q)| as the simulations.
With the relative random noise described above we do not have constant variance, as is

demonstrated inFigs. 16and17. Here we have plotted the residualri := |E(ti,0; q̂OLS)|−
|Êi | against time,ti , and also against|E(ti,0; q̂OLS)|.As onewould expect with noise that is
relative in size to the signal value, we have a pattern inFig. 16that follows the pattern of the
original signal.Fig. 17demonstrates the fan shape associated with noise that is dependent
upon the size of the signal, i.e., nonconstant variance.
Since constant variance is most conveniently assumed in standard error analysis, we

further consider estimates obtained from an inverse problem applied to data with constant
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Fig. 16. Plots of the absolute value of the residualri=|E(ti ,0; q̂OLS)|−|Êi | versus timeti when the data contains
relative random noise.

variance random noise added. In particular, the data we now consider is generated by

Êj = E(tj ,0, ; q∗)+ �r
j ,

where


j ∼N(0,1)

and the constant� is a scaling factor chosen simply so that the noise level,r , will somewhat
correspond to the parameterr used in the previous section on relative noise. Specifically,
� = maxi Êi/10 ensures thatJ ∗ in the constant variance cases is on the same order of
magnitude as those in the relative noise cases above for all choices ofd and� that we have
considered.
The variance of this data is

�2= E[�22r

2
j ] = �22rE[
2j ] = �22r ,

whereE denotes the expectation. Therefore, we do have constant variance. Note further
the resulting lack of patterns inFigs. 18and19. The suspicious looking phenomenon of
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Fig. 17. Plots of the absolute value of the residualri = |E(ti ,0; q̂OLS)| − |Êi | versus the absolute value of the
electric fieldE(ti ,0; q̂OLS) when the data contains relative random noise.

many points on the lineE = 0 is simply because in the original dataE is very close to zero
most of the time.Fig. 20demonstrates graphically the difference between relative noise
and constant variance noise. The relative noise case is particularly difficult in our inverse
problem since most of our initial estimates are based on accurately determining the peak
locations, yet this is exactly where most of the relative noise is concentrated.
With constant variance, and further, assuming that each
j is identically independently

(normally) distributed, we have that (see[4]) in the limit asNs →∞
q̂OLS ∼N2(q0,�2

0[ST (q0)S(q0)]−1).

HereS(q̂) = �|E|
�q (q̂) which is anNs × 2 matrix sinceq = (d, �) and|E| is evaluated at

Ns sample times. Also, the scale parameter�2
0 is approximately given by

�2
0 =

1

Ns − 2

Ns∑
i=1

(|E(ti,0; q0)| − |Êi |)2.
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Fig. 18. Plots of the absolute value of the residualri=|E(ti ,0; q̂OLS)|−|Êi | versus timeti when the data contains
constant variance random noise.

In the above equations,q0 denotes the theoretical “true” value of the parameter that best
describes thesystem fromwhich thedata is taken.Note that in this case, this isnot necessarily
the same asq∗ since themethod used to generate the data is different from the forward solve
simulator. Thereforeq0 is generally unknown even in examples with simulated data.
As demonstrated in the previous sections, ourq̂OLS is often a better minimizer than even

the original value ofq∗, therefore we will approximateq0 in the above equations bŷqOLS.
In particular, if we denote the covariance matrix asC0 = �2

0[ST (q0)S(q0)]−1, then we
will approximateC0 byC = �2

OLS[ST (q̂OLS)S(q̂OLS)]−1, where

�2
OLS=

1

Ns − 2

Ns∑
i=1

(|E(ti,0; q̂OLS)| − |Êi |)2.

We compute�2
OLS by multiplying ourJmin by an appropriate conversion factor, since they

are defined in a similar manner. However, in order to compute the partial derivatives with
respect tod and� in S we employ forward differencing, which requires an additional
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Fig. 19. Plots of the absolute value of the residualri = |E(ti ,0; q̂OLS)| − |Êi | versus the absolute value of the
electric fieldE(ti ,0; q̂OLS) when the data contains constant variance random noise.

forward simulation for eachqj . For q̂ = q̂OLS we have, for example

Si1= �|E|
�q1

(ti ,0; q̂) ≈ |E(ti,0; [q̂1, q̂2])| − |E(ti,0; [(1− hd)q̂1, q̂2])|
hdq̂1

and similarly for eachSi2. In our computations we used the relative differencing factor of
hd = 1× 10−4. One could also use a sensitivity equations approach (e.g., see[1] and the
references therein), but since the variational equations are quite difficult to solve for this
example, we choose instead to approximate the partials with respect toq directly with our
simulations.
We also need to point out that while taking the absolute value of a function limits dif-

ferentiability at a small number of points, the derivative does exist almost everywhere. The
absolute value function does not change the magnitude of the derivative where it exists,
which is what we need to compute the dot product ofS with itself. By using finite dif-
ferences to estimate derivatives, we are essentially under-estimating at the discontinuities.
Under-estimating a few points out of thousands is not going to significantly change our
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Fig. 20. The difference between data with relative noise added and data with constant variance noise added is
clearly evident whenE is close to zero or very large.

Table 5
Confidence intervals for the OLS estimate ofdwhen the data is generated with no noise (i.e.,r = 0.0)

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (2.00005± 9.30284× 10−7)× 10−2 (4.00013± 1.62162× 10−6)× 10−2

.0004 (2.00001± 6.50411× 10−7)× 10−2 (4.00001± 1.19064× 10−6)× 10−2

.0008 (2.00001± 4.91232× 10−7)× 10−2 (4.00002± 9.05240× 10−7)× 10−2

covariance matrix. (Alternatively, one could have defined the objective function by squar-
ing the signals instead of taking absolute values to avoid this problem. In this research we
were interested in comparingJ1 andJ2 in previous sections above and changing the scale
of E by squaring it would have prevented this.)
With S calculated, we can now evaluateC = �2

OLS[ST (q̂OLS)S(q̂OLS)]−1. Then the
standard error forq1 = d is estimated by

√
C11 while the standard error forq2 = � is

estimated by
√
C22. SeeTables 5–12for confidence intervals relating to variousd∗, �∗ and

r values. For example, in the case ofd∗ = .02,�∗ = .0002 and withr = .01 our covariance
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Table 6
Confidence intervals for the OLS estimate ofdwhen the data is generated with noise levelr = .01

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (2.00004± 4.86952× 10−6)× 10−2 (4.00013± 5.69385× 10−6)× 10−2

.0004 (2.00001± 3.50259× 10−6)× 10−2 (4.00001± 4.02428× 10−6)× 10−2

.0008 (2.00001± 2.87772× 10−6)× 10−2 (4.00001± 3.32933× 10−6)× 10−2

Table 7
Confidence intervals for the OLS estimate ofdwhen the data is generated with noise levelr = .05

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (2.00004± 2.41541× 10−5)× 10−2 (4.00014± 2.76640× 10−5)× 10−2

.0004 (2.00000± 1.68896× 10−5)× 10−2 (4.00001± 1.90853× 10−5)× 10−2

.0008 (2.00003± 1.40398× 10−5)× 10−2 (4.00000± 1.60390× 10−5)× 10−2

Table 8
Confidence intervals for the OLS estimate ofdwhen the data is generated with noise levelr = .1

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (2.00000± 4.72903× 10−5)× 10−2 (4.00014± 5.48283× 10−5)× 10−2

.0004 (2.00003± 3.39327× 10−5)× 10−2 (4.00002± 3.87474× 10−5)× 10−2

.0008 (2.00003± 2.79911× 10−5)× 10−2 (4.00003± 3.19526× 10−5)× 10−2

Table 9
Confidence intervals for the OLS estimate of� when the data is generated with no noise (i.e.,r = 0.0)

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (1.99272± 0.000182978)× 10−4 (1.98142± 0.000317616)× 10−4

.0004 (4.00035± 0.000201885)× 10−4 (4.00737± 0.000369841)× 10−4

.0008 (7.99833± 0.000136586)× 10−4 (8.00332± 0.000251291)× 10−4

Table 10
Confidence intervals for the OLS estimate of� when the data is generated with noise levelr = .01

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (1.99410± 0.000958274)× 10−4 (1.98029± 0.00111475)× 10−4

.0004 (4.00170± 0.00108740)× 10−4 (4.00667± 0.0012499)× 10−4

.0008 (7.99882± 0.000800042)× 10−4 (8.00486± 0.000923838)× 10−4
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Table 11
Confidence intervals for the OLS estimate of� when the data is generated with noise levelr = .05

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (1.99606± 0.00475672)× 10−4 (1.98106± 0.00541764)× 10−4

.0004 (4.00190± 0.00524360)× 10−4 (4.01214± 0.00593246)× 10−4

.0008 (7.99045± 0.00391181)× 10−4 (8.00947± 0.00444525)× 10−4

Table 12
Confidence intervals for the OLS estimate of� when the data is generated with noise levelr = .1

� d∗ = .02 (N = 2048) d∗ = .04 (N = 4096)

.0002 (2.00017± 0.00932701)× 10−4 (1.97674± 0.0107203)× 10−4

.0004 (4.00070± 0.0105331)× 10−4 (4.01229± 0.0120445)× 10−4

.0008 (7.99698± 0.00778563)× 10−4 (8.00361± 0.00886925)× 10−4

matrix is

C =
[

2.37122× 10−15 −4.43815× 10−15
−4.43815× 10−15 9.1829× 10−15

]
,

which results in the confidence intervalsd ∈ (2.00004± 4.86952× 10−6) × 10−2 and
� ∈ (1.9941± 0.000958274)× 10−4.
Thewidth of these bounds are±0.000243471%and±0.0480555%of the approximation

value respectively. For thed∗ = .02 case, the average size of the confidence intervals for
r = .01, .05, .1 respectively were±.0002%,±.001%,±.002% (averaged over various�∗
values ranging from.0001 to.0008). It is interesting that the widths of the confidence inter-
vals nearly exactly double, on average, when the noise level doubles. For thed∗ = .04 case
the average size of the confidence intervals were±.0001%,±.0006%,±.001%. Likewise,
when the widths of the confidence intervals for�∗ = .0002 are averaged over several var-
iousd∗ values (.02, .04, .08) we get±.05999%,±.2883%,±.5718% forr = .01, .05, .1
respectively. For�∗ = .0004 the averages are±.03331%,±.1575%,±.3154%. In general,
largerd∗ and�∗ values have smaller (tighter) confidence intervals. This suggests that the
approximations found in these cases are better than those estimating small parameters.
While this is intuitive, it is not apparent looking at the estimates themselves or even the final
objective function values (see, for example,Table 4).

6. Conclusion

In this presentation, we have explored a “proof of concept” formulation of an inverse
problem to detect and characterize voids or gaps inside of, or behind, a dielectric medium.
We have simplified the problem to one dimension and used Maxwell’s equations to model
a pulsed, normally incident electromagnetic interrogating signal. We use finite element
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discretization in space, and finite differences in time, to simulate the electric field in the
time domain. This is coupled with a Levenberg–Marquardt scheme in an optimization step
with an innovative cost functional appropriate for reflected waves where phase differences
can produce ill-posedness in the inverse problem when one uses the usual ordinary least
squares criterion.Wehave successfully demonstrated that it is possible to resolve gapwidths
on the order of .2mm between a dielectric slab of 20 cm and a metal (perfectly conducting)
surface using an interrogating signal with a 3mm wavelength.
Future work on this problem will likely involve more efficient computational methods

since currently the inverse problem involving a 20 cm slab takes 10h. Further, more sophis-
ticated models for describing the polarization mechanisms in non-homogeneous materials
must be developed. Finally, in order to take scattering and non-normally incident electro-
magnetic signals into account, multi-dimensional models will be necessary.
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