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Well-posedness in Maxwell systems with distributions of
polarization relaxation parameters
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Abstract

We present existence, uniqueness and continuous dependence (with respectto probability distributions on
polarization parameters) of solutions in Maxwell systems. This provides a theoretical and computational foundation
for associated inverse problems.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this note we consider well-posedness questions for the variational solutions of one dimensional
Maxwell’s equations with an absorbing left boundary condition, a supraconducting right boundary
condition and a general macroscopic polarization term which includes uncertainty in the dielectric
parameters. For these solutions, we establish existence, uniqueness and continuous dependence on the
uncertainty measures in a Prohorov metric (see [4,1] for definitions and details) sense. As explained
below, these results can be readily used in an inverse problem methodology to determine the unknown
distribution of the dielectric parameters which govern the behavior of the electric field and the electric
polarization in a general heterogeneous material with multiple mechanisms (Debye, Lorentz, etc.) and
relaxation parameters.
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2. Problem formulation

We consider the one dimensional problem formulation in [3]. AssumingD = εE + P, we mayobtain
Maxwell’s equations [6] in second order form given by:

µ0ε Ë + µ0IΩ P̈ + µ0σ Ė − E ′′ = −µ0 J̇s in Ω ∪ Ω0, (1)

where E is the transverse component of the electric field,P is the material macroscopic electric
polarization,ε = ε(z) is the dielectric permittivity andσ = σ (z) is the conductivity of the material.
Theboundary conditions that we are assuming are absorbing atz = 0 and supraconducting atz = 1:

[Ė − cE ′]z=0 = 0, E(t,1) = 0. (2)

Our initial conditions are

E(0, z) = Φ(z), Ė(0, z) = Ψ (z). (3)

To describe the behavior of the electric polarizationP, we begin with the general formulation of
Chapter 2 of [3] by employing a polarization kernelg in the convolution expression

P(t, z) =
∫ t

0
g(t − s, z; τ)E(s, z)ds. (4)

As explained in [3], this general formulation includes as special cases the well known orientational or
Debye polarization model, the electronic or Lorentz polarization model, and linear combinations thereof,
as well as other higher order models. In the Debye case the kernel is given by

g(t; τ) = (ε0(εs − ε∞)/τ)e−t/τ ,

while in the Lorentz model (again see [3]), it takes the form

g(t; τ) = ε0ω
2
p/ν0e−t/2τ sin(ν0t).

However, use of these kernels presupposes that the material may be sufficiently defined by a single
relaxation parameterτ , which is generally not the case. In order to account for multiple relaxation
parameters in the polarization mechanisms, we allow for a distribution of relaxation parameters which is
conveniently described in terms of a probability measureF . Thus, we define our polarization model in
terms of a convolution operator

P(t, z) =
∫ t

0
G(t − s, z)E(s, z)ds,

whereG is determined by various polarization mechanisms each described by a different parameterτ ,
and therefore is given by

G(t, z; F) =
∫
T

g(t, z; τ)dF(τ ),

whereT ⊂ [τ1, τ2]. In particular, if the distribution were discrete, consisting of a single relaxation
parameter, then we would again have (4).

Notethat,

P̈(t, z) =
∫ t

0
G̈(t − s, z)E(s, z)ds + G(0, z)Ė(t, z)+ Ġ(0, z)E(t, z), (5)
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where

G̈(t, z; F) =
∫
T

g̈(t, z; τ)dF(τ ).

Substituting (5) into (1) weobtain

µ0ε Ë(t, z)+ µ0IΩ [σ + G(0, z)]Ė(t, z)+ µ0IΩ Ġ(0, z)E(t, z)

+
∫ t

0
µ0IΩ G̈(t − s, z)E(s, z)ds − E ′′(t, z) = −µ0 J̇s(t, z).

Further, converting to weak form (and multiplying both sides byc2), we find

〈ε̃r Ë(t, ·), φ〉 + 〈 1

ε0
IΩ [σ + G(0, ·)]Ė (t, ·), φ〉 + 〈 1

ε0
IΩ Ġ(0, ·)E(t, ·), φ〉

+ 〈 1

ε0

∫ t

0
IΩ G̈(t − s, ·)E(s, ·)ds, φ〉 − 〈c2E ′′(t, ·), φ〉 = −〈 1

ε0
J̇s(t, ·), φ〉,

whereε̃r = ε/ε0 andφ ∈ V = H 1
R(0,1) = {φ ∈ H 1(0,1) : φ(1) = 0}. (Without loss of generality, we

will hereafter assumẽεr = 1.) Finally, we integrate by parts, and apply the boundary conditions (2) to
obtain

〈Ë(t, ·), φ〉 + 〈 1

ε0
IΩ [σ + G(0, z)]Ė(t, ·), φ〉 + 〈 1

ε0
IΩ Ġ(0, ·)E(t, ·), φ〉

+ 〈 1

ε0

∫ t

0
IΩ G̈(t − s, ·)E(s, ·)ds, φ〉 + 〈c2E ′(t, ·), φ′〉 + cĖ(t,0)φ(0) = −〈 1

ε0
J̇s(t, ·), φ〉,

which we can rewrite as

〈Ë , φ〉 + 〈γ Ė, φ〉 + 〈βE, φ〉 + 〈
∫ t

0
α(t − s, ·)E(s, ·)ds, φ〉 + 〈c2E ′, φ′〉 + cĖ(t,0)φ(0)

= 〈J , φ〉, φ ∈ V, (6)

where

γ (z) = 1

ε0
IΩ [σ (z)+ G(0, z)] = 1

ε0
IΩ

[
σ (z)+

∫
T

g(0, z; τ)dF(τ )

]

β(z) = 1

ε0
IΩ Ġ(0, z) = 1

ε0
IΩ

∫
T

ġ(0, z; τ)dF(τ )

α(t, z) = 1

ε0
IΩ G̈(t, z) = 1

ε0
IΩ

∫
T

g̈(t, z; τ)dF(τ )

J (t, z) = − 1

ε0
J̇s(t, z).

3. Estimation methodology

Our goal is to estimate the probability distribution function (PDF) of relaxation parametersF ∈
P(T ) in a given model of the polarization, whereP(T ) is the set of all PDFs on the admis-
sible region T ⊂ [τ1, τ2]. To this end we attempt to minimize the difference between model
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simulations and observations of time-domain data. In our formulation (for details, see [3]), the
observations,Ê j , are of the electric fieldE at discrete timest j taken atz = 0. Each simulation
is a solution of Maxwell’s equation given in (6) with (3) using candidate values for the distribution
of relaxation parameters. We propose a standard least-squares criterion (which is equivalent to a
maximum likelihood estimation in many situations; see [5]) for the optimization procedure given
by

J (F) =
∑

j

|E(t j ,0; F) − Ê j |2, (7)

where E(·, ·; F) is the solution of (6) with (3) corresponding to the distributionF . Thus the inverse
problem is to solve

min
F∈P(T )

J (F).

In practice, one may choose to approximate a continuous distributionF by a discrete one with, for
example, N elements. This approach would result in a straight-forwardN -dimensional minimization
problem. Other parameterizations of the unknown distribution are also possible to reduce the problem to
a finite dimensional one.

4. Well-posedness

In this section we address the questions of well-posedness of the form of Maxwell’s equation given in
(6) with respect to the unknown distribution of dielectric parameters. In particular we wish to establish
the continuous dependence of solutions on the distributions in the sense of the Prohorov metric. This
leads in turn to well-posedness for the inverse problems involving (7).

First, given that we assumeg, ġ, andg̈ are uniformly continuous inτ and bounded on([0, T ]×[0,1]×
[τ1, τ2]), where 0< τ1 < τ2 < ∞, thenG, Ġ, andG̈ areL∞ since, for example,

|G|∞ ≤
∫
T

|g(·, ·; τ)|∞dF(τ ) ≤ M∞

whenT ⊂ [τ1, τ2]. Therefore, α, β, andγ are all alsoL∞. Thus, for each fixedF ∈ P(T ), α, β, and
γ satisfy the hypothesis of Theorem 1 in [3, p. 35], so that givenΦ ∈ V , Ψ ∈ H = L2(0,1), a unique
solution to (6) with (3) exists, andE ∈ L2([0, T ], V ), Ė ∈ L2([0, T ], H ).

It remains yet to show the continuous dependence of solutions onF . First we note thatFn → F in the
Prohorov sense is equivalent to∫

f (τ )dFn(τ ) →
∫

f (τ )dF(τ ) ∀ f ∈ C[τ1, τ2].

Sinceg̈ is uniformly continuous inτ , we have then thatα(t, z; Fn) → α(t, z; F) a.e. whenFn → F .
We will define αn := α(t, z; Fn) andα := α(t, z; F). Because|αn|L∞ ≤ M for all n, the Dominated
Convergence Theorem implies thatαn → α in L2([0, T ] × [0,1]). Similarly, we can show thatβn → β

andγn → γ in L2.
We consider arguments for fixedβ andγ . We need to show that(En, Ėn) → (E, Ė) in L2([0, T ], V )×

L2([0, T ], H ) whenαn → α, whereEn denotes the solution to (6) corresponding toαn.
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We begin by subtracting equation (6) corresponding toα from (6) corresponding toαn to
obtain

〈Ën − Ë, φ〉 + 〈γ (Ėn − Ė), φ〉 + 〈β(En − E), φ〉 + 〈c2(En′ − E ′), φ′〉
+ c[Ėn(t,0) − Ė(t,0)]φ(0) = −〈

∫ t

0
[αn(t − s, z)En(s, z)− α(t − s, z)E(s, z)]ds, φ〉.

By adding and subtracting a mixed term to the right side, we have

〈Ën − Ë, φ〉 + 〈γ (Ėn − Ė), φ〉 + 〈β(En − E), φ〉 + 〈c2(En′ − E ′), φ′〉
+ c[Ėn(t,0) − Ė(t,0)]φ(0) = −〈

∫ t

0
αn(E

n − E)ds, φ〉 − 〈
∫ t

0
(αn − α)Eds, φ〉. (8)

Following the general procedure in [3] (see also [7,8] for related fundamental ideas and theory), we
approximateEn andE in Vm = span{w1, . . . , wm} by

En
m(t, z) =

m∑
i=1

en
i (t)wi (z)

Em(t, z) =
m∑

i=1

ei(t)wi (z).

Then (8) becomes

〈Ën
m − Ëm, φ〉 + 〈γ (Ėn

m − Ėm), φ〉 + 〈β(En
m − Em), φ〉 + 〈c2(En′

m − E ′
m), φ

′〉
+ c[Ėn

m(t,0)− Ėm(t,0)]φ(0) = −〈
∫ t

0
αn(E

n
m − Em)ds, φ〉 − 〈

∫ t

0
(αn − α)Emds, φ〉,

which musthold for allφ ∈ Vm. SinceĖn
m and Ėm are both inVm, we may takeφ = Ėn

m − Ėm . Then we
have

1

2

d

dt
[|Ėn

m − Ėm |2H + σ1(E
n
m − Em, En

m − Em)] + ∣∣√γ (Ėn
m − Ėm)

∣∣2

H
+ c|Ėn

m(t,0)− Ėm(t,0)|2

= 〈k(En
m − Em), Ėn

m − Ėm〉 − 〈
∫ t

0
αn(E

n
m − Em)ds, Ėn

m − Ėm〉

− 〈
∫ t

0
(αn − α)Emds, Ėn

m − Ėm〉,

where we have used the sesquilinear formσ1 : V × V → C defined by

σ1(φ,ψ) = 〈c2φ′, ψ ′〉H + 〈β̂φ, ψ〉H

for φ, ψ ∈ V and whereβ̂ = β + k > 0 for somesufficiently largek > 0.
Integration, along with theV -ellipticity of σ1, yields

|Ėn
m(t)− Ėm(t)|2H + c1|En

m(t)− Em(t)|2V + 2
∫ t

0

∣∣√γ (Ėn
m(s)− Ėm(s))

∣∣2

H
ds

+ 2c|Ėn
m(t,0)− Ėm(t,0)|2L2(0,t) ≤ 2

∣∣∣∣
∫ t

0
Fn

m(ξ)dξ

∣∣∣∣ , (9)
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where

Fn
m(ξ)=〈k[En

m(ξ)− Em(ξ)], Ėn
m(ξ)− Ėm(ξ)〉 − 〈

∫ ξ

0
αn[En

m(s)− Em(s)]ds, Ėn
m(ξ)− Ėm(ξ)〉

− 〈
∫ ξ

0
[αn − α]Em(s)ds, Ėn

m(ξ)− Ėm(ξ)〉
= T2(ξ)+ T3(ξ)+ T4(ξ).

Following precisely the arguments in [3] we have that∫ t

0
|T2(ξ)|dξ ≤

∫ t

0

[
1

2
k2|En

m(ξ)− Em(ξ)|2H + 1

2
|Ėn

m(ξ)− Ėm(ξ)|2H
]

dξ

and ∫ t

0
|T3(ξ)|dξ ≤ K1

∫ t

0
|En

m(ξ)− Em(ξ)|2H dξ + K2

∫ t

0
|Ėn

m(ξ)− Ėm(ξ)|2H dξ.

Lastly, we bound the final term by

|T4(ξ)|=〈
∫ ξ

0
[αn(ξ − s)− α(ξ − s)]Em(s)ds, Ėn

m(ξ)− Ėm(ξ)〉

≤ 1

2

∣∣∣∣
∫ ξ

0
[αn(ξ − s)− α(ξ − s)]Em(s)ds

∣∣∣∣
2

H

+ 1

2
|Ėn

m(ξ)− Ėm(ξ)|2H .

SinceEm is bounded inC([0, T ], V ),

|T4(ξ)|≤ 1

2

(∫ ξ

0
KE |αn(ξ − s)− α(ξ − s)|H ds

)2

+ 1

2
|Ėn

m(ξ)− Ėm(ξ)|2H

≤ 1

2
K 2

E t
∫ ξ

0
|αn(ξ − s)− α(ξ − s)|2H ds + 1

2
|Ėn

m(ξ)− Ėm(ξ)|2H .

Thus∫ t

0
|T4(ξ)|dξ ≤ K̂3

∫ t

0

∫ ξ

0
|αn(ξ − s)− α(ξ − s)|2H ds dξ + K4

∫ t

0
|Ėn

m(ξ)− Ėm(ξ)|2H dξ.

We observe that∫ t

0

∫ ξ

0
f (ξ − s)ds dξ =

∫ t

0

∫ t−u

0
f (u)ds du

=
∫ t

0
f (u)(t − u)du

≤ C
∫ t

0
f (u)du for t, u ∈ [0, T ].

Therefore∫ t

0
|T4(ξ)|dξ ≤ K3

∫ t

0
|αn(u)− α(u)|2H du + K4

∫ t

0
|Ėn

m(ξ)− Ėm(ξ)|2H dξ.
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Using the above bounds, we find that (9) becomes

|Ėn
m(t)− Ėm(t)|2H + c1|En

m(t)− Em(t)|2V + 2
∫ t

0

∣∣√γ (Ėn
m(s)− Ėm(s))

∣∣2

H
ds

+ 2c|Ėn
m(·,0)− Ėm(·,0)|2L2(0,t)

≤ C1

∫ t

0
|En

m(s)− Em(s)|2H ds + C2

∫ t

0
|Ėn

m(s)− Ėm(s)|2H ds + C3

∫ t

0
|αn(s)− α(s)|2H ds. (10)

Noting that| · |H ≤ µ| · |V for some constantµ and letting

κn :=
∫ T

0
|αn(s)− α(s)|2H ds = |αn − α|2L2([0,T ],H),

we then have that (10) implies

|Ėn
m(t)− Ėm(t)|2H + |En

m(t)− Em(t)|2V ≤ νκn + ν

∫ t

0
[|En

m(s)− Em(s)|2V + |Ėn
m(s)− Ėm(s)|2H ]ds

for someν > 0 independent ofm andn. Using Gronwall’s Inequality we have

|Ėn
m(t)− Ėm(t)|2H + |En

m(t)− Em(t)|2V ≤ νκneνT for t ∈ [0, T ]. (11)

From the existence proof in [3] we have that for each fixedn, En
m ⇀ En in L2([0, T ], V ). Therefore

using weak lower semicontinuity of norms we have

|En − E |2L2([0,T ],V ) ≤ lim inf
m

|En
m − Em |2L2([0,T ],V ),

with a similar estimate holding foṙEn − Ė in the L2([0, T ], H ) norm. We may apply these results to the
integral of (11) from 0 toT to finally obtain

|Ėn − Ė |2L2([0,T ],H) + |En − E |2L2([0,T ],V ) ≤ νκnT eνT .

Sinceαn → α in L2, thenκn → 0, which gives continuous dependence of(E, Ė) on α. Similar
arguments show that(E, Ė) depend continuously onγ and also onβ. Thus we have that solutions of (6)
with (3) depend continuously on the probability measureF in the sense that the map

F → (E, Ė)

is continuous fromP(T ) to L2([0, T ], V )× L2([0, T ], H ).
Further, this yields thatF → J (F) = ∑

j |E(t j ,0; F)− Ê j |2 is continuous fromP(T ) to R
1, where

P(T ), with the Prohorov metric, is compact forT compact. Then the general theory of Banks–Bihari in
[1] as outlined in [2] can be employed to obtain existence and stability for the inverse problem, as well
as an approximation theory which can be used as a basis for a computational methodology.

5. Conclusion

We have presented theoretical results on a model for the electric field with multiple electric
polarization mechanisms in a dielectric material. This provides a firm foundation for an inverse problem
formulation to determine an unknown probability distribution of parameters which describe the dielectric
properties of the material. To this end, we have shown the continuous dependence of the solutions with
respect to the unknown distributions in the Prohorov metric. This argument, combined with previous
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results on existence and uniqueness in Maxwell systems, demonstrate the well-posedness of the model.
Moreover, the theory described in [1,2] can be combined with our results here to provide existence,
stability, and an approximation theory for the associated inverse problems.

Acknowledgements

This research was supported in part by the U.S. Air Force Office of Scientific Research under grant
AFOSR F49620-01-1-0026 and in part by the NASA Langley GSRP under grant NGT-1-02004.

References

[1] H.T. Banks, K.L. Bihari, Modeling and estimating uncertainty in parameter estimation, Inverse Problems 17 (2001) 95–111.
[2] H.T. Banks, D.M. Bortz, G.A. Pinter, L.K. Potter, Modeling and imaging techniques with potential for application in

bioterrorism, Technical Report CRSC-TR03-02, Center for Research in Scientific Computation, North Carolina State
University, January, 2003, in: H.T. Banks, C. Castillo-Chavez (Eds.), Bioterrorism: Mathematical Modeling Applications
in Homeland Security, SIAM Frontiers in Applied Math, vol. FR28, SIAM, Philadelphia, 2003, pp. 129–154 (Chapter 6).

[3] H.T. Banks, M.W. Buksas, T. Lin, Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic
Wavefronts, SIAM Frontiers in Applied Mathematics, Philadelphia, 2000.

[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[5] M. Davidian, D. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London, 1998.
[6] R.S. Elliott, Electromagnetics: History, Theory and Applications, IEEE Press, New York, 1993.
[7] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971.
[8] J. Wloka, Partial Differential Equations, Cambridge University Press, 1992.


	Well-posedness in Maxwell systems with distributions of polarization relaxation parameters
	Introduction
	Problem formulation
	Estimation methodology
	Well-posedness
	Conclusion
	Acknowledgements
	References


