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Homogenization of Periodically Varying Coefficients
in Electromagnetic Materials
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In this paper, we employ the periodic unfolding method for simulating the electro-
magnetic field in a composite material exhibiting heterogeneous microstructures
which are described by spatially periodic parameters. We consider cell problems
to calculate the effective parameters for a Debye dielectric medium in the case
of a circular microstructure in two dimensions. We assume that the composite
materials are quasi-static in nature, i.e., the wavelength of the electromagnetic
field is much larger than the relevant dimensions of the microstructure.

KEY WORDS: Homogenization; Maxwell’s equations; debye dielectric materi-
als; pulsed antenna source microwaves.

1. INTRODUCTION

In this article, we study the behaviour of the electromagnetic field in
a material presenting heterogeneous microstructures (composite materi-
als), which are described by spatially periodic parameters. We will subject
such composite materials to electromagnetic fields generated by currents
of varying frequencies. When the period of the structure is small com-
pared to the wavelength, the coefficients in Maxwell’s equations oscillate
rapidly. These oscillating coefficients are difficult to treat numerically in
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simulations. Homogenization is a process in which the composite mate-
rial having a microscopic structure is replaced with an equivalent material
having macroscopic, homogeneous properties. In this process of homog-
enization the rapidly oscillating coefficients are replaced with new effec-
tive constant coefficients. The primary objective of homogenization, i.e., of
the micro–macro approach, is to replace a system with periodically vary-
ing coefficients by a limiting homogeneous system that facilitates compu-
tation. The approach that we take here is based on the periodic unfolding
method presented in [8–10]. We first mention other efforts on homogeni-
zation of Maxwell’s equations.

In [26], a method based on spectral expansions for Maxwell’s equa-
tions is presented, which utilizes eigenvectors of the curl operators com-
bined with the microscopic description of the material. The homogenized
material is represented using mean values of only a few eigenvectors. This
method relies on the material being lossless, in which case Maxwell’s equa-
tions can be associated with a self-adjoint partial differential operator. How-
ever, most materials usually have losses due to a small conductivity or
dispersive effects, which renders the corresponding operator in Maxwell’s
equations non-selfadjoint. In [25], the authors use a singular value decompo-
sition for analysing non-selfadjoint operators that arise in Maxwell’s equa-
tions. They expand the electromagnetic field in the modes corresponding to
the singular values, and show that only the smallest singular values make
a significant contribution to the total field when the scale is small. Using
this approach they find effective, or homogenized, material parameters for
Maxwell’s equations when the microscopic scale becomes small compared
to the scale induced by the frequencies of the imposed currents. In [13],
the authors compare two different homogenization methods for Maxwell’s
equations in two and three-dimensions. The first method is the classical way
of determining the homogenized coefficients [10], which consists of solving
an elliptic problem in a unit cell. The second method based on spectral
expansions is described in [26]. In [17], the author presents an overview of
the homogenization of anisotropic materials at fixed frequency using the
concept of two-scaled convergence [1, 21]. The homogenized electric and
magnetic parameters, the relative permittivity and the relative permeability,
respectively, are found by suitable averages of the solution of a local problem
in the unit cell. In [14], a homogenization technique for harmonic Maxwell
equations in a composite periodic medium is presented (see also [18, 22, 27]
for some other homogenization methods for Maxwell’s equations).

In this paper, we use the periodic unfolding method introduced in
[9] in the abstract framework of stationary elliptic equations. The study
in this paper considers constitutive laws that take into account bianisot-
ropy, chiral symmetry, thermal and memory effects. The homogenization
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procedure yields a limit constitutive law different from the original one
wherein the convolution operator that accounts for memory effects is
replaced by a more complex Hilbert–Schmidt operator. We refer the reader
to [6, 7] for the relevant theory. In the following sections, we present the
electromagnetic problem that is of interest to us and then set up the cor-
responding homogenized problem to be solved. A comparison is made
between the effective parameters obtained by the exact homogenization
method presented here and those computed by traditional mixture formu-
lae, such as the Maxwell Garnett formula, the Böttcher mixture rule or
Bruggeman formula, some of which are based on physical arguments [23].

Our efforts here are motivated by use of electromagnetic interrogating
signals (possibly in the Terahertz range) for detection of defects [5, 15] in
the insulating foam on the fuel tanks of the NASA space shuttles. Defects
in the foam are believed to contribute to the problem of separation of the
foam during liftoff, resulting in significant damage to and possibly subse-
quent destruction of the space vehicle itself. The low density, closed cell
foam is a very complex heterogeneous material [20]. It is a polyurethane-
type foam composed of five primary substances: polymeric isocyanate, a
flame retardant, a surfactant, a blowing agent and a catalyst. The sur-
factant controls the surface tension of a liquid and thus cell formation.
The blowing agent creates the foam’s cellular structure by creating millions
of tiny bubbles or foam cells. As a first approximation, we consider here
materials with periodic gas filled cells surrounded by a matrix of poly-
urethane type non-magnetic material. The dielectric properties (permittiv-
ity, conductivity, etc.) vary substantially between the cellular and matrix
materials, leading to highly oscillating coefficients in the Maxwell system
describing propagation, reflection and dispersion of the electromagnetic
fields resulting from the interrogating probes.

2. MAXWELL’S EQUATIONS IN A CONTINUOUS MEDIUM

We employ Maxwell’s equations for a linear and isotropic medium in
a form that includes terms for the electric polarization given by

(i)
∂D
∂t

+Jc −∇×H =Js in (0, T )×Ω,

(ii)
∂B
∂t

+∇×E =0 in (0, T )×Ω,

(iii) ∇ ·D=ρ in (0, T )×Ω,

(iv) ∇ ·B=0 in (0, T )×Ω,

(v) E ×n =0 on (0, T )× ∂Ω,

(vi) E(0,x)=0, H(0,x)=0 in Ω.

(1)
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The vector valued functions E and H represent the strengths of the elec-
tric and magnetic fields, respectively, while D and B are the electric and
magnetic flux densities, respectively. The conduction current density is
denoted by Jc, while the source current density is given by Js . The scalar
ρ represents the density of free electric charges unaccounted for in the
electric polarization. We assume perfect conducting boundary conditions
(1, v), on the boundary ∂Ω, with unit outward normal n. We also assume
zero initial conditions for all the unknown fields. System (1) is completed
by constitutive laws that embody the behaviour of the material in response
to the electromagnetic fields. These are given in (0, T )×Ω in the form

(i) D(t,x)= ε0εr(x)E(t,x)+P(t,x),

(ii) B(t,x)=µ0H(t,x),
(2)

where ε0, and µ0 are the permittivity and the permeability of free space,
respectively, εr is the relative permittivity of the medium under investiga-
tion and P is the media’s macroscopic electric polarization.

For the media that is of interest to us, we can neglect magnetic
effects; we also assume that Ohms’s law governs the electric conductivity,
i.e.,

Jc(t,x)=σ(x)E(t,x) in (0, T )×Ω, (3)

where σ is the conductivity of the medium. We will modify system (1)
and the constitutive laws (2) by performing a change of variables that ren-
ders the system in a form that is convenient for analysis and computation.
From (1, i) we have

∂

∂t

(
D+

∫ t

0
Jc(s,x)ds

)
−∇×H =Js in (0, T )×Ω. (4)

Then we define the new variable

D̃(t,x)=D(t,x)+
∫ t

0
Jc(s,x)ds. (5)

Using definition (5) in (4), we can replace Eqs. (1, i) and (1, iii) by

(i)
∂D̃
∂t

−∇×H =Js in (0, T )×Ω,

(iii) ∇ · D̃=0 in (0, T )×Ω

(6)

and obtain a modified system for the fluxes (D̃, B). We note that Eq. (6,
iii) follows from the continuity equation ∂ρ

∂t
+ ∇ · Jc = 0, the assumption
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that ρ(0)=0, and the assumption that ∇ ·Js =0 (in the sense of distribu-
tions). The modified constitutive law (2, i) after substitution of (3) and (5)
becomes

D̃(t,x)= ε0εr(x)E(t,x)+
∫ t

0
σ(x)E(s,x)ds +P(t,x). (7)

To describe the behaviour of the media’s macroscopic electric polari-
zation P, we employ a general integral representation model in which the
polarization explicitly depends on the past history of the electric field. This
convolution model is sufficiently general to include microscopic polariza-
tion mechanisms such as dipole or orientational polarization as well as
ionic and electronic polarization and other frequency dependent polariza-
tion mechanisms. The resulting constitutive law can be given in terms of
a polarization or displacement susceptibility kernel ν as

P(t,x)=
∫ t

0
ν(t − s,x)E(s,x)ds. (8)

Thus the modified constitutive laws are

(i) D(t,x)= ε0εr(x)E(t,x)+
∫ t

0
{σ(x)+ν(t − s,x)}E(s,x)ds,

(ii) B(t,x)=µ0H(t,x),

(9)

where, in the above and henceforth we have dropped the ˜ symbol over D,
at the same time keeping in mind that D̃ in definition (5) is the modified
electric flux density. Let us define the vector of fields

u = (uT
1 ,uT

2 )T = (ET ,HT )T ∈ W 1,1(0, T ;H 1(Ω;R
6)) (10)

and the operator

Lu(t,x)=
(

D(t,x)

B(t,x)

)
, (11)

which from (9) can be written as

Lu(t,x) =
[

ε0εr(x)I3 03

03 µ0I3

](
E(t,x)

H(t,x)

)

+
∫ t

0

{[
σ(x)I3 03

03 03

]
+
[

ν(t − s,x)I3 03

03 03

]}(
E(s,x)

H(s,x)

)
ds.

(12)
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We label the three 6×6 coefficient matrices in (12) as

A(x)=
[

ε0εr (x)I3 03

03 µ0I3

]
, B(x)=

[
σ(x)I3 03

03 03

]
, C(t,x)=

[
ν(t,x)I3 03

03 03

]
, (13)

where, in the above definitions In is an n×n identity matrix and 0n is an
n×n matrix of zeros, n∈N. Using these definitions we may rewrite (12) as

Lu(t,x)=A(x)u(t,x)+
∫ t

0
B(x)u(s,x)ds +

∫ t

0
C(t − s,x)u(s,x)ds. (14)

Next, we define the Maxwell operator M as

Mu(t,x)=M

(
E(t,x)

H(t,x)

)
=
( ∇×H(t,x)

−∇×E(t,x)

)
(15)

and the vector Js as

Js(t)=−Js(t)e1, (16)

where e1 = (1,0,0,0,0,0)T ∈ R
6, is a unit basis vector. Thus Maxwell’s

equation can be rewritten in the form

(i)
d

dt
Lu =Mu +Js(t) in (0, T )×Ω,

(ii) u(0,x)=0 in Ω,

(iii) u1(t,x)×n(x)=0 on (0, T )× ∂Ω,

(17)

where L is the operator associated with the constitutive law (14), and M is
the Maxwell operator (15). Note that the exterior source term Js has only
one non-zero component.

We assume that the structure that occupies the domain Ω entails peri-
odic microstructures leading to matrices A,B and C with spatially oscilla-
tory coefficients. Specifically, we will assume that εr , σ and ν are rapidly
oscillating spatial functions.

3. THE HOMOGENIZED PROBLEM

The theory presented in this section is based on results from [7]. We
denote by Yα the reference cell of the periodic structure that occupies
Ω (see Fig. 1). The construction of the homogenized problem involves
solving for the corrector subterms w̄A

k ∈ H 1
per(Y ;R

2), w̄k ∈ W 1,1(0, T ;H 1
per
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Fig. 1. Periodic composite material presenting a circular microstructure with periodicity α.
The figure shows α decreasing from left to right.

(Y ;R
2)) and w̄0

k ∈W 2,1(0, T ;H 1
per(Y ;R

2)), solutions to the corrector equa-
tions

(i)
∫

Y

A(y)∇yw̄A
k ·∇yv̄(y)dy =−

∫
Y

A(y)ek ·∇yv̄(y)dy,

(ii)
∫

Y

{
A(y)∇yw̄k(t,y)+

∫ t

0
{B(y)+C(t − s,y)}∇yw̄k(s,y) ds

}
·∇yv̄(y)dy

=−
∫

Y

{B(y)+C(t,y)}
{

ek +∇yw̄A
k

}
·∇yv̄(y)dy,

(iii)
∫

Y

{
A(y)∇yw̄0

k(t,y)+
∫ t

0
{B(y)+C(t − s,y)}∇yw̄0

k(s,y)ds

}
·∇yv̄(y)dy

=−
∫

Y

A(y)ek ·∇yv̄(y)dy

(18)

for all v̄ ∈ H 1
per(Y ;R

2) and k ∈ {1, . . . ,6}. Here H 1
per(Y ;R

2) denotes the
space of periodic functions with vanishing mean value and ∇y = (∇y1 ,∇y2 ,

∇y3)
T ∈ R

3×1. For all v = (v1, v2)
T , with v1 and v2 scalar functions, we

define

∇yv =
(∇yv1

∇yv2

)

6×1

∈R
6×1. (19)

The first corrector term ū, from the two-scale expansion (see [7])

uα =u(x)+∇yū(x,y)+· · · , x ∈Ω,y ∈Y (20)

is given as

ū(t,x,y)= w̄A
k (y)uk(t,x)+

∫ t

0
w̄k(t − s,y)uk(s,x)ds + w̄0

k(t,y)u0
k(x) (21)
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with ū ∈ W 2,1(0, T ;H 1
per(Y ;R

2)), where we have considered the decompo-
sitions u(t,x)=uk(t,x)ek and u0(x)=u0

k(x)ek, k =1, . . . ,6. Rewriting (21)
in matrix form we have

ū(t,x,y)= w̄A(y)u(t,x)+
∫ t

0
w̄(t − s,y)u(s,x)ds + w̄0(t,y)u0(x), (22)

where w̄A ∈R
2×6 with columns {w̄A

k }6
k=1. Similarly w̄0, w̄∈R

2×6. The expan-
sion (20) can be written as

Eα
xl

=Exl
+ ∂yl

ū1(x,y)+· · · , (23a)

Hα
xl

=Hxl
+ ∂yl

ū2(x,y)+· · · , (23b)

with l =1,2,3. We now define a new operator

Lu(t,x)=Au(t,x)+B
∫ t

0
u(s,x)ds +

∫ t

0
C(t − s)u(s,x)ds, (24)

where the 6 × 6 matrices A,B and C are computed using the solutions of
system (18) as follows

(i) Ak =
∫

Y

A(y)
{

ek +∇yw̄A
k (y)

}
dy,

(ii) Bk =
∫

Y

B(y)
{

ek +∇yw̄A
k (y)

}
dy,

(iii) Ck(t) =
∫

Y

C(t,y)
{

ek +∇yw̄A
k (y)

}
dy +

∫
Y

A(y)∇yw̄k(t,y)dy

+
∫

Y

∫ t

0
{B(y)+C(t − s,y)}∇yw̄k(s,y)ds dy

(25)

for k=1,2, . . . ,6, and where Ak,Bk,Ck are the kth columns of the homog-
enized matrices A,B and C, respectively. In the homogenized problem, the
electromagnetic field u is the solution of the system

(i)
d

dt
Lu =Mu +Js in (0, T )×Ω,

(ii) u(0,x)=0 in Ω,

(iii) u1(t)×n =0 on (0, T )× ∂Ω,

(26)

where Js is as defined in (16) M is as defined in (15) and L is as defined
in (24). We note that if the initial conditions are non-zero, then there is a
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supplementary source term J 0 that should be introduced in the right side
of (26, i), which is given to be

J 0(t,x)=u0
k(x)

d

dt

{∫
Y

(
A∇yw̄0

k(t)+
∫ t

0
(B+C(t − s))∇yw̄0

k(s) ds

)
dy
}

,

(27)

k =1, . . . ,6 (see [7] for details.).

4. REDUCTION TO TWO SPATIAL DIMENSIONS

We now assume our problem possesses uniformity in the spatial direc-
tion y (see Fig. 2 for a schematic of the computational domain). In this
case Maxwell’s equations decouple into two different modes, the transverse
electric (TE) and transverse magnetic (TM) modes. Here, we are interested
in the TE mode. The TE mode involves the components Ex , Ez for the
electric field and the component Hy of the magnetic field. Let x,y ∈ R

3

with x = (x1, x2, x3) and y = (y1, y2, y3). We will use x ∈ R
3 for points on

the macro scale, and y ∈R
3 for points on the micro scale (reference cell).

Since we assume uniformity in the x2-direction, we may take all derivatives
with respect to x2 (or y2 in the microscale) to be zero. Then Eq. (17, i)

Fig. 2. The computational domain with surrounding perfectly matched absorbing layers
(PML). The figure shows an antenna in the region [x̄1, x̄2]×zc, x̄1, x̄2 ∈X0, and the composite
material displaying periodic circular microstructures in the region X0 ×ZD . The PML layers
are terminated by perfectly conducting boundary conditions (PEC walls).
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when written in scalar form decouples into the TE mode



∂tDx1

∂tBx2

∂tDx3


=




∂x3Hx2 −Js

−∂x3Ex1 + ∂x1Ex3

∂x1Hx2


 (28)

and the TM mode 


∂tBx1

∂tDx2

∂tBx3


=




−∂x3Ex2

∂x3Hx1 − ∂x1Hx3

−∂x1Ex2


 . (29)

Recall here that D is the modified electric flux density, where we have
dropped the ˜ notation. We assume that our pulse is polarized to only
have an x1-component. In this case the component that is of interest in
our problem is the Ex1 component.

5. HOMOGENIZATION MODEL IN TWO-DIMENSIONS

In a similar manner to the three-dimensional case, we may construct
matrices ATE, BTE and CTE that represent the constitutive relations in two
dimensions. Thus the constitutive matrices are

ATE =
[

ATE
11 0

0 µ0

]
, BTE =

[
BTE

11 0

0 0

]
, CTE =

[
CTE

11 0

0 0

]
, (30)

ATE
11 (x)=

[
ε0εr(x) 0

0 ε0εr(x)

]
, BTE

11 (x)=
[
σ(x) 0

0 σ(x)

]
,

CTE
11 (t,x)=

[
ν(t,x) 0

0 ν(t,x)

]
. (31)

The homogenized solution for the TE mode is obtained from the for-
mal asymptotic expansion (23) as

Eα
x1

= Ex1 + ∂y1 ū1(x,y)+· · · , (32a)

Eα
x3

= Ex3 + ∂y3 ū1(x,y)+· · · , (32b)

Hα
x2

= Hx2 + ∂y2 ū2(x,y)+· · · (32c)
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Also, since we are assuming uniformity in the x2-direction, we set the term
∂y2 ū2(x,y) to zero. So (32) becomes

Eα
x1

= Ex1 + ∂y1 ū1(x,y)+· · · , (33a)

Eα
x3

= Ex3 + ∂y3 ū1(x,y)+· · · , (33b)

Hα
x2

= Hx2 . (33c)

Hence the homogenized electric field for the TE mode is

Eα =E +∇yū1(x,y)+· · · , (34)

where the gradient operator in this case is ∇y = (∂y1 , ∂y3)
T . Therefore, we

only need to solve for ū1(x,y), which in turn only depends on the first
component of w̄A

k , w̄0
k and w̄k, for k=1,2; we will refer to these as w̄A

k , w̄0
k

and w̄k, respectively.
Let us again denote by Y the reference cell of the periodic structure

that occupies Ω ⊂ R
2. The construction of the two-dimensional homoge-

nized problem involves solving for the corrector subterms w̄A
k ∈ H 1

per(Y ),
w̄k ∈W 1,1(0, T ;H 1

per(Y )) and w̄0
k ∈W 2,1(0, T ;H 1

per(Y )), solutions to the cor-
rector equations

(i)
∫

Y

ATE
11 (y)∇yw̄

A
k ·∇yv̄(y)dy =−

∫
Y

ATE
11 (y)ek ·∇yv̄(y)dy,

(ii)
∫

Y

ATE
11 (y)∇yw̄k(t,y) ·∇yv̄(y)dy

+
∫

Y

∫ t

0

{
BTE

11 (y)+CTE
11 (t − s,y)

}∇yw̄k(s,y)ds ·∇yv̄(y)dy

=−
∫

Y

{
BTE

11 (y)+CTE
11 (t,y)

}{
ek +∇yw̄

A
k

} ·∇yv̄(y)dy,

(iii)
∫

Y

ATE
11 (y)∇yw̄

0
k(t,y) ·∇yv̄(y)dy

+
∫

Y

∫ t

0

{
BTE

11 (y)+CTE
11 (t − s,y)

}∇yw̄
0
k(s,y)ds ·∇yv̄(y)dy

=−
∫

Y

ATE
11 (y)ek ·∇yv̄(y)dy

(35)

for all v̄ ∈H 1
per(Y ), k =1,2 and e1 = (1,0)T , e2 = (0,1)T . Note, we drop the

range space R
n in H 1

per(Y ;R
n), whenever n=1. Since the initial conditions

that we have chosen are zero, we will not need to calculate the correc-
tor w̄0

k . We will only need to solve for w̄A
k and w̄k. Once we have solved
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for these corrector terms, we can then construct the homogenized matrices
from

(i) (ATE
11 )k =

∫
Y

ATE
11 (y)

{
ek +∇yw̄

A
k (y)

}
dy,

(ii) (BTE
11 )k =

∫
Y

BTE
11 (y)

{
ek +∇yw̄

A
k (y)

}
dy,

(iii) (CTE
11 )k(t) =

∫
Y

CTE
11 (t,y)

{
ek +∇yw̄

A
k (y)

}
dy +

∫
Y

ATE
11 (y)∇yw̄k(t,y)dy

+
∫

Y

∫ t

0

{
BTE

11 (y)+CTE
11 (t − s,y)

}
∇yw̄k(s,y) ds dy,

(36)

where ek, k = 1,2 are the basis vectors in R
2, (ATE

11 )k, (BTE
11 )k and(CTE

11 )k
are the kth columns of the matrices ATE

11 ,BTE
11 and CTE

11 , respectively, and
the homogenized matrices are given by

ATE =
[
ATE

11 0

0 µ0

]
, BTE =

[
BTE

11 0

0 0

]
, CTE =

[
CTE

11 0

0 0

]
. (37)

The corresponding system of equations in the TE mode are

(i)
d

dt
LTEu =MTEu +JTE

s in (0, T )×Ω,

(ii) u(0,x)=0 in Ω,

(iii) u3nx1 −u1nx3 =0 on (0, T )× ∂Ω,

(38)

where u = (Ex1 ,Ex3 ,Hx2)
T , n = (nx1 , nx3)

T is the unit outward normal vec-
tor to ∂Ω, the operator LTE is defined as

LTEu(t,x)=ATEu(t,x)+BTE
∫ t

0
u(s,x)ds +

∫ t

0
CTE(t − s)u(s,x)ds (39)

and MTE is the two-dimensional curl operator

 0 0 −∂x3

0 0 ∂x1

∂x3 −∂x1 0


 (40)

and JTE
s (t)=−Js(1,0,0)T . As mentioned in Sec. 3, if the initial conditions

are non-zero, then there is a supplementary source term J 0 that should
be introduced in the right side of (38, i), which is as given in (27) with
A =ATE, B=BTE and C=CTE defined in (30) and (31).
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6. MODELS FOR POLARIZATION

The constitutive law in (8) is sufficiently general to include models
based on differential equations and systems of differential equations or
delay differential equations whose solutions can be expressed through fun-
damental solutions (in general variation-of-parameters representations)—
(see [3] for details). A number of known polarization laws can be easily
treated.

1. The choice of the kernel function

ν(t,x)= ε0(εs(t,x)− ε∞(t,x))

τ (t,x)
e−t/τ (t,x), x ∈X0 ×ZD (41)

in the dielectric X0 × ZD (see Fig. 2) corresponds to the differ-
ential equation of the Debye Model for orientational or dipolar
polarization given by

τ(t,x)Pt (t,x)+P(t,x) = ε0(εs(t,x)− ε∞(t,x))E(t,x), (42)

D(t,x) = ε0ε∞(t,x)E(t,x)+P(t,x). (43)

Here εs is the static relative permittivity. The presence of instanta-
neous polarization is accounted for in this case by the coefficient
ε∞ in the electric flux equation. That is, εr =ε∞ in X0 ×ZD, εr =1
in air. The remainder of the electric polarization is seen to be a
decaying exponential with relaxation parameter τ , driven by the
electric field, less the part included in the instantaneous polariza-
tion. This model was first proposed by Debye [12] to model the
behaviour of materials that possess permanent dipole moments.
The magnitude of the polarization term P represents the degree
of alignment of these individual moments. The choice of coeffi-
cients in (42) gives a physical interpretation to εs and ε∞ as the
relative permittivities of the medium in the limit of the static field
and very high frequencies, respectively. In the static case, we have
Pt =0, so that P=ε0(εs −ε∞)E and D=εsε0E. For very high fre-
quencies, τPt dominates P so that P≈0 and D= ε∞ε0E.

2. The general model also includes the Lorentz model for electronic
polarization which, in differential form, is represented with the
second-order equation:

Pt t (t,x)+ 1
τ(t,x)

Pt (t,x)+ω2
0P(t,x)= ε0ω

2
p(t,x)E(t,x), (44)

D(t,x)= ε0ε∞(t,x)E(t,x)+P(t,x). (45)
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In (44), ωp is called the plasma frequency and is defined to be

ωp =ω0
√

εs − ε∞, (46)

where ω0 is the resonance frequency. A simple variation of con-
stants solution yields the correct kernel function

ν(t) = ε0ω
2
p

ν0
e−t/2τ sin (ν0t), (47)

ν0 =
√

ω2
0 − 1

4τ 2
. (48)

3. For more complex dielectric materials, a simple Debye or Lo-
rentz polarization model is often not adequate to characterize the
dispersive behaviour of the material. One can then turn to combi-
nations of Debye, Lorentz or even more general nth-order mech-
anisms as well as Cole–Cole type (fractional order derivatives)
models. We refer the reader to [3, 11] for details.

7. NUMERICAL DISCRETIZATION FOR THE CELL PROBLEM

7.1. Spatial Discretization Via Finite Elements

We divide the reference cell Y into elementary squares, and consider
Th to be a uniform mesh with elements {K} of edge length h. We define
the finite dimensional space

Vh ={vh | vh ∈C0(Ȳ), vh|K ∈Q1 for all K ∈Th}, (49)

which approximates H 1(Y). In (49), the space Q1 is defined as Q1 =P11,
where, for k1, k2 ∈N∪{0}

Pk1k2 =
{
p(x1, x2)|p(x1, x2)=

∑
0�i�k1

∑
0�j�k2

aij x
i
1x

j

2 , aij ∈R

}
. (50)

Thus, P11 is the space of the bilinear functions of two variables, and Vh is
the space of continuous piecewise bilinear functions. We now consider the
subspace

Vper,h ={vh | vh ∈Vh, vh(y1,0)=vh(y1,1) and

vh(0, y2)=vh(1, y2) for all y1, y2 ∈ [0,1]} (51)

of Vh, where Y = [0,1]× [0,1].
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Thus the spatially discrete problem is to find w̄A
k,h ∈ Vper,h, w̄k,h ∈

W 1,1(0, T ;Vper,h) and w̄0
k,h ∈ W 2,1(0, T ;Vper,h), solutions to the corrector

equations

(i) ε0

∫
Y

εr,h(y)∇h
y w̄A

k,h ·∇h
y v̄h(y)dy =−ε0

∫
Y

εr,h(y)ek ·∇h
y v̄h(y)dy,

(ii) ε0

∫
Y

εr,h(y)∇h
y w̄k,h(t,y) ·∇h

y v̄h(y)dy

+
∫

Y

∫ t

0
{σh(y)+νh(t − s,y)}∇h

y w̄k,h(s,y) ·∇h
y v̄h(y)dsdy

=−
∫

Y

{σh(y)+νh(t,y)}
{

ek +∇h
y w̄A

k,h

}
·∇h

y v̄h(y)dy,

(iii) ε0

∫
Y

εr,h(y)∇h
y w̄0

k,h(t,y) ·∇h
y v̄h(y)dy

+
∫

Y

∫ t

0
{σh(y)+νh(t − s,y)}∇h

y w̄0
k,h(s,y) ·∇h

y v̄h(y)dsdy

=−ε0

∫
Y

εr,h(y)ek ·∇h
y v̄h(y)dy

(52)

for all v̄h ∈Vper,h and k =1,2 and e1 = (1,0)T , e2 = (0,1)T and ∇h
y is a dis-

crete approximation to the gradient. In (52), we have used the definitions
(31) of the matrices ATE

11 , BTE
11 and CTE

11 .

7.2. Time Discretization Via a Recursive Convolution Approach

Since the susceptibility kernel ν(t,x), is exponential in nature for
many materials of interest, we can use recursion to compute the discret-
ized time convolution of the susceptibility kernel with the electric field in
the corrector subproblems, e.g., (52, ii) and (52, iii). The details of the
method highlighted here may be found in [2]. A similar approach known
as the recursive convolution (RC) method has been used to compute the
discrete convolution terms that appear in Maxwell’s equations [16, 19]. Let
tn = n∆t , for some timestep ∆t and let Vn denote the time component
V(n∆t) for any vector field V.

We will assume that all field components are constant over each time
interval of length ∆t . Assuming that all field vectors are zero for t <0, the
Eq. (52, ii) can be discretized in time as
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ε0

∫
Y

εr,h(y)∇h
y w̄n

k,h(y) ·∇h
y v̄h(y)dy

+
∫

Y

n−1∑
m=0

∫ (m+1)∆t

m∆t

{σh(y)+νh(n∆t − s,y)}∇h
y w̄m+1

k,h (y) ·∇h
y v̄h(y)dsdy

=−
∫

Y

{σh(y)+νh(n∆t,y)}
{

ek +∇h
y w̄A

k,h

}
·∇h

y v̄h(y)dy. (53)

Let us define

νn
m(y)=

∫ (m+1)∆t

m∆t

νh(n∆t − s,y)ds. (54)

Using definition (54) in (53) and rearranging we have

∫
Y

{
ε0εr,h(y)+∆t σh(y)+νn

n−1

}∇h
y w̄n

k,h(y) ·∇h
y v̄h(y)dy

+
n−2∑
m=0

∫
Y

νn
m∇h

y w̄m+1
k,h (y) ·∇h

y v̄h(y)dy

+
n−2∑
m=0

∆t

∫
Y

σh(y)∇h
y w̄m+1

k,h (y) ·∇h
y v̄h(y)dy

= −
∫

Y

{σh(y)+νh(n∆t,y)}
{

ek +∇h
y w̄A

k,h

}
·∇h

y v̄h(y)dy.

(55)

In Eq. (55) all the terms can be computed with the knowledge of just
the solution at time tn =n∆t , i.e., ∇h

y w̄n
k,h, except the discrete convolution

term involving νn
m for m = 0, . . . , n − 2. We now show that the discrete

convolution of all previous ∇h
y w̄m

k,h field values and the discrete suscepti-
bility function can be reduced to recursive updating of a single vector on
each element in the finite element mesh, which involves a matrix vector
multiplication at each time step.

7.3. Recursive Convolution for Debye Polarization

We consider the case of Debye polarization in the remainder of this
paper.

In this case, from (54) the function νn
m is defined as

νn
m(y)=

∫ (m+1)∆t

m∆t

ε0(εs,h(y)− ε∞,h(y))

τh(y)
e−(tn−s)/τh(y)ds, y ∈Y. (56)
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From (55) we define the summation

Ψ n
K =

n−2∑
m=0

∫
K

νn
m∇h

y w̄m+1
k,h (y) ·∇h

y v̄h(y)dy, K ∈Th, (57)

where νn
m is defined in (56). Equation (57) constitutes the time discrete

convolution of the susceptibility function νh and all field values of ∇yw̄
m
k,h

up to the nth time step.
Then for the n+1 st step we find

Ψ n+1
K =

n−2∑
m=0

∫
K

νn+1
m ∇h

y w̄m+1
k,h (y) ·∇h

y v̄h(y)dy

+
∫

K

νn+1
n−1∇h

y w̄n
k,h(y) ·∇h

y v̄h(y)dy. (58)

From (56) we can derive the identity

νn+1
m (y)=νn

m(y)e−∆t/τh(y). (59)

Using (59) in (58) we obtain

Ψ n+1
K =

n−2∑
m=0

∫
K

νn
me−∆t/τh(y)∇h

y w̄m+1
k,h (y) ·∇h

y v̄h(y)dy

+
∫

K

νn+1
n−1∇h

y w̄n
k,h(y) ·∇h

y v̄h(y)dy. (60)

In the spatial discretization of the reference cell Y , we will assume that the
spatially dependent functions τh(y), εs,h(y), ε∞,h(y) and σh(y) are constant
on each element K of the finite element mesh Th. With this assumption,
for every element K ∈Th, we have

Ψ n+1
K = e−∆t/τh(K)

n−2∑
m=0

∫
K

νn
m∇h

y w̄m+1
k,h (y) ·∇h

y v̄h(y)dy

+
∫

K

νn+1
n−1∇h

y w̄n
k,h(y) ·∇h

y v̄h(y)dy. (61)

Combining (61) and (57), we obtain the recursion

Ψ n+1
K = e−∆t/τh(K)Ψ n

K +
∫

K

νn+1
n−1∇h

y w̄n
k,h(y) ·∇h

y v̄h(y)dy, (62)
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where νn+1
n−1(K), from the definition (56), can be calculated to be

νn+1
n−1(K)= ε0(εs,h(K)− ε∞,h(K))e(−2∆t)/τh(K)(e∆t/τh(K) −1). (63)

The finite element function Ψ n
h , which is defined to be Ψ n

K on element K

in the triangulation Th can be calculated as

Ψ n+1
h =

∑
K∈Th

(
e−∆t/τh(K)Ψ n

K +
∫

K

νn+1
n−1∇h

y w̄n
k,h(y) ·∇h

y v̄h(y)dy
)

. (64)

Thus we have the recursion

Ψ n+1
h =

∑
K∈Th

e−∆t/τh(K)Ψ n
K +

∫
Y

νn+1
n−1∇h

y w̄n
k,h(y) ·∇h

y v̄h(y)dy. (65)

We note that given the value Ψ n
K for every element K ∈Th at tn =n∆t , we

can calculate Ψ n+1
h by Eq. (65) which only requires the knowledge of the

solution vector w̄n
k,h at the nth step! The solutions w̄m

k,h for m<n are not
needed to be stored in memory for this calculation. We can treat the dis-
crete convolution in (52, iii) in the same manner as above.

The calculation of the discrete homogenized matrix CTE
h also requires

the computation of a time integral which at time tn = n∆t requires the
knowledge of the solutions w̄m

k,h at previous times m∆t,m = 1, . . . , n − 1.
Thus, we again try to obtain a recursive formula that will aid in the compu-
tation of these time integrals. Once we have solved for the discrete corrector
terms, we can then construct the discrete homogenized matrices from

(i) (ATE
11,h

)k =
∫

Y

ATE
11,h(y)

{
ek +∇h

y w̄A
k,h(y)

}
dy,

(ii) (BTE
11,h

)k =
∫

Y

BTE
11,h(y)

{
ek +∇h

y w̄A
k,h(y)

}
dy,

(iii) (CTE
11,h

)k(t) =
∫

Y

CTE
11,h(t,y)

{
ek +∇h

y w̄A
k,h(y)

}
dy

+
∫

Y

ATE
11,h(y)∇h

y w̄k,h(t,y) dy (66)

+
∫

Y

∫ t

0

{
BTE

11,h(y)+CTE
11,h(t − s,y)

}
∇h

y w̄k,h(s,y)ds dy,

where as in (36), ek, k =1,2 are the basis vectors in R
2, (ATE

11,h
)k, (BTE

11,h
)k

and (CTE
11,h

)k are the kth columns of the discretized matrices ATE
11,h

,BTE
11,h
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and CTE
11,h

, respectively, and the discrete homogenized matrices are calcu-
lated as

ATE
h =

[
ATE

11,h
0

0 µ0

]
, BTE

h =
[
BTE

11,h
0

0 0

]
, CTE

h =
[
CTE

11,h
0

0 0

]
. (67)

Using the definitions of the discrete matrices we rewrite (66) as

(i) (ATE
11,h

)k = ε0

∫
Y

ε∞,h(y)
{

ek +∇h
y w̄A

k,h(y)
}

dy,

(ii) (BTE
11,h

)k =
∫

Y

σh(y)
{

ek +∇h
y w̄A

k,h(y)
}

dy,

(iii) (CTE
11,h

)k(tn) =
∫

Y

νh(t,y)
{

ek +∇h
y w̄A

k,h(y)
}

dy

+ε0

∫
Y

ε∞,h(y)∇h
y w̄k,h(t,y)dy

+
∫

Y

∫ n∆t

0
{σh(y)+νh(n∆t − s,y)}∇h

y w̄k,h(s,y)ds dy.

(68)

The term ∫
Y

∫ n∆t

0
νh(n∆t − s,y)∇h

y w̄k,h(s,y)ds dy (69)

in Eq. (68, iii) can be computed using a recursive formula that does not
require knowledge of the solutions w̄m

k,h at times m∆t,m=1, . . . , n−1. To
derive a recursive formula, we again need to use properties of the suscep-
tibility function νh. We define the term in (69) to be

T n
h =

n−1∑
m=0

∫
Y

νn
m∇h

y w̄m+1
k,h (s,y)dy. (70)

where νn
m is defined in (56). We then have

T n+1
h =

n∑
m=0

∫
Y

νn+1
m ∇h

y w̄m+1
k,h (s,y)dy

=
n−1∑
m=0

∫
Y

νn+1
m ∇h

y w̄m+1
k,h (s,y)dy +

∫
Y

νn+1
n ∇h

y w̄n+1
k,h (s,y)dy. (71)

Using (59) in (71) we obtain the recursion

T n+1
h =

∑
K∈Th

e−∆t/τ(K)T n
h (K)+

∫
Y

νn+1
n ∇h

y w̄n+1
k,h (s,y)dy. (72)
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8. NUMERICAL EXAMPLES

In this section, we present results of initial computations based
on the above discretization schemes that we have carried out for cir-
cular microstructures. Results of numerical experiments involving square
microstructures can be found in [2]. In all of these computations we have
used a conjugate gradient method to solve the resulting linear systems that
arise after discretizing our model in space and time.

8.1. Examples with Varying Relative Permittivity

In the following examples we choose the value of the relative permit-
tivity to be

εr(x)= ε∞(x)=
{

εi =1.003, if x ∈S,

εe =2.7, if x ∈Y/S̄,
(73)

where S is the microstructure that is enclosed inside the reference cell.
These values are taken from experimental measurements for air and poly-
urethane material which are the primary components of the insulating
foam described in the introduction.

We will solve a cell problem in the reference cell Y = [0,1] × [0,1], in
which the relative permittivity is given in Eq. (73), where S is the circular
microstructure enclosed inside the reference cell, as depicted in Fig. 3. In
this test case we will assume that εs =ε∞, σ =0 and τ =3.16×10−8. Hence
the parameters σ and τ are constant over the entire dielectric material.
Since ε∞ =εs , we have that ν(t)=0 for all time t . Thus in this example, the
model possesses instant polarization but does not have a hysteretic term
in the polarization. Our numerical simulation is performed on a 51 × 51
nodes mesh grid. We define the inclusion volume fraction f as the ratio

f = area of inclusion
area of domain Y

=area of inclusion. (74)

For f =0.5 the homogenized matrix ATE
11 is

ATE
11 = ε0

[
1.68009 −2.92×10−4

−2.92×10−4 1.68009

]
(75)

and the homogenized matrices BT E
11 and CT E

11 are the zero matrices.
In the numerical solution for the homogenized model we have approx-

imated the circular microstructure in a staircase fashion. In Table I,
we present the homogenized relative permittivities for different inclusion
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Fig. 3. (left) Periodic composite material presenting a circular microstructure with periodicity
α. (right) The reference cell Y = [0,1]× [0,1].

volume fractions f , and different refinements of the mesh grid that is
imposed on the reference cell Y . Here h denotes the mesh step size. In this
table we note that the lower and upper off-diagonal entries, (ATE

11 )lod, and
(ATE

11 )uod, respectively, of the homogenized matrix ATE
11 decrease at least

as fast as O(h) as the mesh grid is refined. The error in the off-diagonal
terms is probably due to the inaccurate representation of the circular
microstructure by a staircase approximation, and this is possibly also the
reason for the varying magnitudes of the off-diagonal entries for different
values of f . Hence ATE

11 is approximately diagonal with identical diagonal
entries. For the case of f =0.5 we have

ATE
11 ≈1.68 ε0

[
1.0 0

0 1.0

]
. (76)

Thus the homogenized or effective relative permittivity for f =0.5 is εr =
1.68.

In Fig. 4, we plot the relative effective permittivity versus the inclusion
volume fraction for the method discussed in this paper and compare it
to different theoretical mixture models, namely the Maxwell–Garnett for-
mula, the Bruggeman mixture rule, as well as the weighted average of the
different relative permittivities. (We refer the reader to [23] for a discus-
sion of the various theoretical mixing formulas.) We note how close our
predicted values of the effective relative permittivity are to those predicted



212 Banks et al.

Table I. The Effective Relative Permittivities for Different Volume Fractions with a
Circular Microstructure

f fsc h (ATE
11 )d (ATE

11 )lod (ATE
11 )uod

0.7854 0.78 0.02 1.23068 5.92955×10−3 5.92955×10−3

0.78 0.01 1.23186 1.86948×10−3 1.86948×10−3

0.785 0.005 1.23347 1.16484×10−3 1.16484×10−3

0.785 0.0025 1.23767 5.41779×10−4 5.41779×10−4

0.5027 0.502 0.02 1.68009 −2.92023×10−4 −2.92023×10−4

0.502 0.01 1.68299 −7.31937×10−5 −7.31937×10−5

0.502 0.005 1.68509 −1.94965×10−5 −1.94965×10−5

0.502 0.0025 1.68523 −5.02621×10−6 −5.02621×10−6

0.7124 0.7124 0.02 1.34434 −8.69546×10−19 −2.42287×10−17

0.7129 0.01 1.34789 −3.21656×10−18 −1.73589×10−17

0.7124 0.005 1.35081 2.19197×10−16 5.59808×10−16

0.7125 0.0025 1.35216 −1.96101×10−18 5.536×10−16

0.1257 0.1252 0.02 2.40606 −6.64092×10−4 −6.64092×10−4

0.1253 0.01 2.40637 −1.72749×10−4 −1.72749×10−4

0.1255 0.005 2.40609 −4.39996×10−5 −4.39996×10−5

0.1255 0.0025 2.40626 −1.15057×10−5 −1.15057×10−5

The table lists the diagonal entries, (ATE
11 )d, of the homogenized matrix ATE

11 as well as
the lower and upper off-diagonal entries (ATE

11 )lod and (ATE
11 )uod, respectively, for differ-

ent levels of refinement of the mesh grid on the reference cell Y . Here f is the volume
fraction and fsc is the computed volume fraction using the staircase approximation.

by these mixing rules. The prediction of the effective relative permittivity
of the composite mixture εeff according to these formulas is given by

εeff = εe +2f εe

εi − εe

εi + εe −f (εi − εe)
(Maxwell–Garnett), (77)

(1−f )
εe − εeff

εe + εeff
+f

εi − εeff

εi + εeff
=0 (Bruggeman). (78)

These formulas hold for randomly distributed circular inclusions of per-
mittivity εi in a homogeneous environment of permittivity εe. The inclu-
sions occupy a volume fraction f of the homogeneous medium. These
different mixing models predict different effective permittivity values for
a given mixture. There are also bounds that limit the range of the
predictions. These bounds are the Weiner bounds given by

εeff ,max = f εi + (1−f )εe (weighted average), (79)

εeff ,min = εiεe

f εe + (1−f )εi

. (80)
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Fig. 4. Effective relative permittivity distribution for random mixtures with circular
microstructures.

These bounds hold for all values of εi and εe. Other mixing models such
as power-law models, the Lichtenecker formula, etc., also exist in the liter-
ature. We again refer the reader to [23, 24] for further details. In Fig. 5, we
plot the solution vectors w̄A

1 and w̄A
2 , for f =0.5, over the reference cell Y .

In Fig. 6 we plot a topview of the corresponding solution vectors in the
domain Y . We observe the large deformations of the corrector functions in
Figs. 5 and 6. This indicates that the contribution of these corrector func-
tions to the electromagnetic fields is non trivial.

8.2. Example with Varying Relaxation Times

We now consider an example of a composite material in which the
value of the relaxation time τ is given to be

τ(x)=
{

τi =1.58×10−8, if x ∈S,

τe =3.16×10−8, if x ∈Y/S̄,
(81)
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where again S is a circular microstructure. In this test case, we will assume
that the other parameters namely, εs , σ and ε∞, are constant over the
entire dielectric material with ε∞ =5.5, εs =78.2 and σ =1.0×10−5.

In Fig. 7, we plot the results of the cell problem. This figure plots
the effective dielectric response function (DRF) as a function of time.
We compare the homogenized DRF with four different cases. The low-
frequency case corresponds to one in which the relaxation time τ is given
to be the weighted average of τi and τe

τlow =f τi + (1−f )τe. (82)

The high-frequency case corresponds to the relaxation time

τhigh =
(

f

τi

+ 1−f

τe

)−1

. (83)

The low and high-frequency averages for the relaxation time τ were
observed in numerical experiments that were performed in [4], in which
a probabilistic approach is taken to an electromagnetic interrogation
problem of a dielectric medium that is a mixture of two Debye media
with different relaxation times τ . The low-frequency average corresponds
to the average relaxation time that is observed when the composite
media is interrogated by electromagnetic pulses at frequencies of 106 Hz,
whereas the high-frequency average was observed at higher frequencies
of 109−1011 Hz (frequencies are considered low here if the corresponding
angular frequency ω<1/τ ).

In Fig. 7, we also compare the homogenized DRF to the weighted
average of the corresponding DRF’s, i.e.,

νwa(t)=f νi + (1−f )νe, (84)

where

(i) νi(t) = ε0(εs − ε∞)

τi

e−t/τi ,

(ii) νe(t) = ε0(εs − ε∞)

τe

e−t/τe

(85)

as well as to another average that we call the inverse weighted average,
which is the inverse of the weighted averages of the inverses of the two
DRF’s, i.e.,

νIwa(t)=
(

f

νi

+ (1−f )

νe

)−1

, (86)
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where νi and νe are defined in (85, i) and (85, ii), respectively. Clearly Fig.
7 demonstrates good agreement between the homogenized DRF and the
other approximations. Finally in Fig. 8 we plot the homogenized DRF
as a function of the inclusion volume fraction at times t = 0.556 and
t = 27.78 ns. For t � min(τi, τe) one can show that νIwa(t) ≈ ν(t; τlow) as
is clearly seen in the top plot of this figure. Similarly we have νwa(t) ≈
ν(t; τhigh). We observe that for all values of f the plot of the homoge-
nized DRF lies between the other approximations for both small and large
times.

9. CONCLUSIONS AND FUTURE DIRECTIONS

Taking into account the large deformations of the corrector functions
(see Figs. 5 and 6) we can expect that the correction of the electric and
magnetic fields as given by (20) will be of crucial interest. The results of
the cell problem with circular microstructures for calculating effective rel-
ative permittivities agree well with the mixing formulae results that are
available in the literature. However, there are several advantages to tak-
ing a homogenization approach to obtain effective dielectric parameters.
First, mixing formulae are not available for general microstructure geome-
tries. Close examination of the materials of long-term interest to us reveal
that the foam consists of hexagonal-like cells in a microstructure config-
uration that is 95% gas surrounded by a matrix of polyurethane, which
has an estimated relative permittivity of 2.7. A homogenization approach
will permit us to ascertain the sensitivity of the effective permittivities with
respect to the micro-geometry. While we have used a staircase method to
approximate the circular microstructure in the cell problem, the approach
also permits better approximations (e.g., a fictitious domain approach) for
the circular (and other shape) microstructures in the cell problem.

A second advantage of a homogenization approach is the flexibility
it affords in assumptions about material polarization laws. Here in proof-
of-concept calculations we have used a Debye medium for polarization
but could with equal ease investigate the cases of Lorentz media, compos-
ite laws and other higher order dispersive media. Moreover, as we investi-
gate other mechanisms, it may be computationally advantageous to treat
directly the polarization law as a side constraint. That is, the hysteretic
term of the polarization is most generally represented by an integral term,
which involves a dielectric response function. Our numerical approxima-
tion to this approach involved a recursive convolution method to approx-
imate the integral term. Our current efforts entail an approach in which
the homogenized model involves an ordinary differential equation for the
hysteretic part of the polarization term. This approach should facilitate
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numerical approximation of the solution of the electromagnetic interroga-
tion problem for a wide class of assumed polarization mechanisms.

The initial results of the cell problems for the calculation of the
dielectric response function compare well with the results that were
obtained in [4], where a probabilistic approach is taken to an electromag-
netic interrogation problem in a dielectric medium that is a mixture of two
Debye media with different relaxation times. Each approach has its own
conceptual, theoretical and computational advantages that merit further
comparisons.
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