
Mathematical and Computer Modelling 44 (2006) 807–815
www.elsevier.com/locate/mcm

Void detection in foam with knit lines using THz pulse interrogation
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Abstract

We model the electromagnetic interrogation of a polyurethane foam using the transverse electric (TE) mode of the two-
dimensional (2D) Maxwell’s equations reduced to the wave equation for a fixed frequency in the terahertz (THz) regime. The
foam block target contains knit lines which are modeled by modifying the speed of propagation, i.e., by altering the index of
refraction. We describe our efforts to estimate the dielectric constant in the knit lines, as well as in the surrounding foam, by use
of the classical Clausius–Mossotti equation, assuming only a change in density. We compare the numerical simulations accounting
for knit lines to those in which knit lines are neglected, each in the context of modeling reflections of plane waves in foam with
voids.
c© 2006 Published by Elsevier Ltd
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1. Introduction

The problem we consider is the scattering of a terahertz (THz) plane wave in the possible presence of thin knit lines
(i.e., layers of increased density) and voids (i.e., pockets of no density) inside a block of low-density polyurethane
foam, similar to BX-250, which was used on the space shuttle Columbia. The detection of voids inside the Sprayed
on Foam Insulation (SOFI) belonging to the Thermal Protection System (TPS) is of critical importance to the NASA
Return to Flight effort. In initial efforts, THz frequency waves have been shown to be particularly useful in foam
interrogation [8]. However, the modeling of and data interpretation for the propagation of a THz pulse inside a material
which exhibits heterogeneous microstructures of sizes that are on the order of the wavelength of the interrogating field
is not straight-forward. In addition, there is presently a paucity of data on the dielectric properties of low-density foam
in the THz regime. The work in [9] begins to remedy this deficiency.

Previous efforts in THz interrogation of SOFI generally involved limited signal processing techniques such as peak-
to-peak intensity ratio detection [3] and time-of-flight methods to determine the existence of material variations (see,
for example, [10]). Such approaches do not take advantage of very much of the information potentially contained in
the reflected signal. A physics-based model could be used to ascertain more accurately the geometric properties of an
anomaly, such as size and depth, as well as to distinguish between a variation due to the presence of a void and a normal
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Fig. 1. Simulation of plane wave approaching parallel knit lines.

variation due the presence of knit lines. The corresponding information-rich experimental data are difficult to obtain,
since the amplitudes of reflections from low-density materials are very low to immeasurable using currently available
power sources at the THz frequency (e.g., see Figure 2 of [7]). The theory and computations herein, therefore, are in
the nature a “proof of concept” and will hopefully serve as added justification and motivation for the development of
more powerful generation devices.

Models utilizing polarization mechanisms have been investigated previously [1,2], but matching the simulations
to actual composite material experimental data has not yet been completely successful. Moreover, these models
were expressed in only one spatial dimension and thus they do not allow for non-normally incident angles or non-
coplanar interfaces. Previous models also did not explicitly account for the effect of knit lines, using instead an
effective dielectric constant computed from observed time-of-flight measurements. The current effort employs a two-
dimensional model of the propagation of a THz pulse through a medium with curved knit lines and arbitrarily shaped
voids. Because an appropriate model for the dispersion in this type of media has not yet been determined, here we
neglect these phenomena in favor of focusing our attention on the reflections and refractions at the interfaces. We note
that, while a dispersion mechanism may later be coupled to this model, the single dominant frequency aspect of this
problem will likely lead to similar results in both modeling approaches. In particular, insomuch as dispersion models
treat the index of refraction as frequency dependent, we may assume that the constant index of refraction used herein
is fixed at the value associated with the dominant frequency mode of the interrogating pulse.

2. Model

For our domain, we choose a square region (0 ≤ x ≤ b, 0 ≤ y ≤ b) consisting of a low-density material with
possible layers of higher density and pockets that are modelled as having zero density, i.e., voids. Fig. 1 depicts a
simulation with a schematic of two knit lines (represented by dashed lines) 1 mm from each other, each parallel to
an approaching plane wave, and perpendicular to the direction of propagation. The far right boundary (y = b) is
assumed to be metallic and therefore supra-conducting, thus simulating the aluminum backing of the SOFI on the
shuttle’s external tank.

We combine the TE mode of the two-dimensional Maxwell’s equations into one equation

ε(Ex)
∂2 E

∂t
(t, Ex) + ∇ ·

(
1

µ(Ex)
∇E(t, Ex)

)
= −

∂ Js

∂t
(t, Ex), (1)
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where Ex = (x, y), and ε(Ex) and µ(Ex) are the spatially dependent dielectric permittivity and magnetic permeability,
respectively. The corresponding speed of propagation is

c(Ex) =
c0

n(Ex)
=

√
1

ε(Ex)µ(Ex)
,

where c0 is the speed in a vacuum and n(Ex) is the index of refraction.
For our source current Js , we wish to simulate a windowed pulse, in this case a pulse that is allowed to oscillate for

one half of one period and then is truncated. Although generators produce a curved, often spherical wave, we assume
that the target is sufficiently far from the generator (approximately 6 in.) so that the wave is essentially planar when
it reaches our domain of interest. We originate the pulse at x = 0, the left edge of our computational domain, and
we model it in space as a delta distribution centered at x = 0. In order to have a smooth (in time) source, we use a
function of the form

Js(t, Ex) = δ(x)e−((t−t0)/t0)γ , (2)

where t0 = t f /4 when t f is the period of the interrogating pulse. For example, if the frequency is f = .2 THz, then
t f = 1/ f = 0.5 × 10−11 s. A reasonable value for the exponent is γ = 4.

2.1. Boundary/initial conditions

Our domain is defined to be the region Ex = (x, y) ∈ [0, b] × [0, b]. Thus, to model a metallic backing behind the
foam at x = b, we use reflecting (Dirichlet) boundary conditions

[E]x=b = 0.

In order to have a finite computational domain, we impose first order absorbing boundary conditions at x = 0; these
are modeled as[

∂ E

∂t
− c(Ex)

∂ E

∂x

]
x=0

= 0.

With these boundary conditions, ideally a normally incident signal passes out of the computational domain, and does
not return, i.e., we force it to be absorbed by the boundary. Note that, for signals that are incident at an angle, some
reflection occurs. Lastly, to allow for propagation along the top and bottom boundaries (y = 0 and y = b), we use
insulating boundary conditions:[

∂ E

∂y

]
y=0

= 0[
∂ E

∂y

]
y=b

= 0.

We assume zero initial conditions so that

E(0, Ex) = 0

Ė(0, Ex) = 0.

2.2. Modeling knit lines

To model the speed of wave propagation in the knit lines versus that in the material surrounding them, we must
distinguish between the respective indices of refraction. However, we can currently only measure the effective index
of refraction of the composite material, for example, by computing the “time of flight” in experiments. Thus we need
to relate these three indices to each other in order to have accurate estimates for the propagation speed for use in
simulations.
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The effective index of refraction ne can be estimated via the Clausius–Mossotti equation (see [6]), by assuming
that the total polarizability is the weighted sum of the two polarizabilities in each part of the material. In particular,

n2
e − 1

n2
e + 2

=
ρ

ρ1

n2
1 − 1

n2
1 + 2

+
ρ

ρ2

n2
2 − 1

n2
2 + 2

, (3)

where ρi and ni are the densities and index of refraction, respectively, in each part of the material, where part 1
corresponds to the low-density region, and part 2 corresponds to the knit lines. The value ρ above is the total density
given by

ρ = νρ2 + (1 − ν)ρ1 (4)

if we assume that the knit lines comprise a certain volume fraction ν of the foam. Let the knit line density ρ2 be some
constant multiple of ρ1 representing an increased density in the knit lines, i.e.,

ρ2 = βρ1. (5)

Substituting (4) and (5) into (3), we obtain

n2
e − 1

n2
e + 2

= (νβ + 1 − ν)

(
n2

1 − 1

n2
1 + 2

+
n2

2 − 1

β(n2
2 + 2)

)
. (6)

If we further assume that the polarizability of the knit lines is equal to that of the low-density region (this is in
recognition that polarizability is a molecular characteristic and the molecules in the high-density knit lines are not
assumed to be significantly different to those in the low-density regions; only the number of molecules is different),
then we also have the following:

n2
1 − 1

n2
1 + 2

=
n2

2 − 1

β(n2
2 + 2)

, (7)

and therefore,

n2
e − 1

n2
e + 2

= 2(νβ + 1 − ν)
n2

1 − 1

n2
1 + 2

. (8)

Thus, if ne is estimated via experiments, n1 can be determined using Eq. (8) with reasonable values of ν and β, and
n2 can in turn be calculated with Eq. (7).

Experiments have suggested, via time-of-flight measurements, a value for the effective index of refraction of
ne = 1.03225 ± 0.001. The volume fraction ν can be estimated by noting the thickness of each knit line divided
by the period in which the knit lines occur. For example, 0.5 mm knit lines in each 0.5 cm of foam corresponds to
ν = 0.1. The compression factor β is more difficult to measure, but experiments can be performed to weigh samples
with varying concentrations of knit lines to estimate the increase in density. An initial estimate based on pictures of
SOFI under 20× magnification [4] is β = 2.5. Using the values β = 2.5 and ν = 0.1, we can estimate the index of
refraction in each part of the foam to be

n1 = 1.01398 (9)

n2 = 1.03507. (10)

If we compute the decrease in speed of a THz pulse due to the presence of knit lines by

p =
1 − n1

ne
,

then (9) would correspond to an observed decrease in speed of 1.77%. Laboratory experiments have suggested that
the decrease in speed is around 2%.
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3. Results

We briefly describe here our techniques for solving the system described in (1) with the boundary and initial
conditions outlined in Section 2.1. Simulations for the cases in which knit lines are ignored are compared to those
where knit lines are described using the values estimated above.

3.1. Numerical solution

We apply a Finite Element method using standard linear two-dimensional (Q1) basis elements to discretize the
model described by Eq. (1) in space. This results in nine-banded mass and stiffness matrices, M and S, respectively.
We also have a contribution from absorbing boundaries, which we denote by B. Thus our semi-discrete system for the
vector of electric field values e is

Më + Bė + Se = f.

(Note that we have absorbed coefficients 1
c2 and 1

c into the definitions of M and B, respectively.)
For the temporal derivatives, we use second order discretizations (centered differences) for both the first and second

derivatives. After collecting all terms involving the updated time step into the left side of the equation, we have the
following linear system

Aen+1 = d, (11)

where A contains multiples of M and B, and d depends on en and en−1, as well as S and f .
We ran numerical comparisons using various linear solvers including preconditioned conjugate-gradient and sparse

LU factorization. The fact that the matrix A is stationary in time contributes to the fact that LU factorization performed
better than any iterative method. However, the size of the problem that could be addressed was severely limited by the
memory constraints when the LU factors exhibit fill-in. The iterative method, on the other hand, can be formulated
using a matrix-free approach, thus freeing memory for representing a larger solution. Unfortunately, the computation
time increases to an unacceptable level.

Therefore we prefer to use a mass-lumping approach, where quadrature rules are applied to the basis functions to
form mass and stiffness matrices which are diagonal. This results in an explicit linear system for (11). This system
is simple to solve at each time step, as it requires only division by the diagonal elements. There is an obvious loss
in accuracy due to the approximate integration inherent in mass-lumping, but the increased efficiency allows for
a finer discretization, which can sometimes compensate. In fact, in our testing of small sample problems there is
not a noticeable difference in accuracy between the three methods (when the computational times are comparable).
However, a distinct difference is that, for the LU method, numerical error presented itself as oscillations preceding
the signal, whereas for the mass-lumped problem, the oscillations followed the signal. Because the beginning of the
reflection is important to determining the location and composition of a defect, we prefer for numerical error to trail
the propagating wave and thus chose the lumped mass system for our simulations.

3.2. Simulations

We perform numerical simulations of a plane wave propagating through a material described by its index of
refraction, which determines the speed of propagation. We consider the presence of a void similar to what is seen
in SOFI when a layer does not completely fill a recess formed in the previous layer, thus causing a pocket of air to be
trapped. The void is modeled by taking its index of refraction to be that of free space (n0 = 1).

Fig. 2 displays snapshots in time of the propagation of a plane wave (the white band) incident on a void in the
material. Here we neglect the specific properties of the knit lines by modeling the entire foam block using only the
effective (“observed”) index of refraction ne. The reflection from the void is clearly seen in the second frame. This
reflection expands out to form an oblong elliptical wave which eventually propagates back to the antenna, where the
signal is recorded with a receiver.

The simulations of the modeling approach proposed in this paper, namely the scenario where the knit lines are
specifically modeled with their own index of refraction n2 and the surrounding low-density regions are described by
n1, are displayed in Fig. 3. Reflections from the knit lines are apparent in the first frame. As in the homogeneous case
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Fig. 2. Surface plots of solutions for the case where the effective index of refraction is used in the low-density part of the foam and in the knit lines
(i.e., the presence of knit lines is ignored).
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Fig. 3. Surface plots of solutions for the case where the indices of refraction n1 and n2 are used in the low-density part of the foam and in the knit
lines, respectively (i.e., the presence of knit lines is not ignored).
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Fig. 4. Signal received at x = 0 on the center line for the homogeneous case (the inset is a magnification of the reflection).

Fig. 5. Signal received at x = 0 on the center line for the case where the knit lines and surrounding regions are modeled separately (the inset is a
magnification of the reflection).

above, the reflection from the void is again visible in the second frame. The interacting reflections are clearly more
complicated in this scenario, as is the data collected by the receiver.

Figs. 4 and 5 depict the data collected over time at the receiver for the two different modelling approaches,
respectively. In the main plot of each figure, the magnitude of the reflection relative to that of the interrogating signal
is apparent. The inset plot of each figure presents a magnification of the reflection from the void. There is a distinct
difference in the structure of the two reflections. In particular, the reflection from the knit line is clearly visible in front
of the reflection from the void in the second case. Note that the amplitude of the reflections in each case is roughly
equivalent, while in the latter case the disruption to the electric field occurs for a longer duration.

4. Conclusions

We have developed a framework which accounts for the presence of knit lines in modeling the electromagnetic
propagation of interrogating pulses in SOFI. We were able to compute, using classical electromagnetics formulations,
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estimates for the index of refraction in both the knit lines and the surrounding low-density foam based on measured
values from time-of-flight experiments and observable material properties. The values were shown to be consistent
with the laboratory-based estimates that a 2% decrease in speed should be evident in the absence of knit lines.

In the effort to detect flaws in low-density materials such as foam, highly accurate models are required to give
simulations the precision necessary to distinguish small amplitude reflections from noise, including that from model
error. In particular, physics-based models have a foundation in theory, lending credibility and, more importantly,
reliability. To validate such models, it is necessary to compare predictions to experimental data. This validation process
sometimes highlights short-comings, which require new physics to be developed.

The work herein provides an approach to enhance the accuracy of a model by making it more representative of
the material in question, while at the same time not increasing substantially the computational complexity of the
system to be solved. The results themselves suggest that knit lines should be taken into consideration in any precise
modeling effort. But the approach of using the Clausius–Mossotti equation to augment the representation of the
dielectric constant can also be applied more generally to other models. In particular, it is already being used to improve
the performance of high-accuracy GPS measurement by accounting for the presence of water vapor in the air [5]. It
is entirely possible that, rather than requiring a complicated distribution of permittivities to account for uncertainty
due to the fluctuations in an otherwise homogeneous material, a simple distribution of densities may, through the
Clausius–Mossotti equation, lead to a more accurate model of the variability in the dielectric parameters.

While the current formulation may be used as a forward solution in an inverse problem context, it is likely that the
highest value will lie in its ability to generate synthetic data with which to test faster signal processing approaches to
damage detection. Thus it can be used either to explore which shapes of voids are the hardest to detect, or to generate
data for scenarios that are difficult or expensive to manufacture.

Future directions for this work include consideration of the full Maxwell’s equations with coupled polarization
and/or scattering mechanisms to account for the attenuation observed in experiments. Further, in an actual
experimental setup, the transmitter is some distance from the receiver, thus the plane wave enters the medium at a
slight angle. Thus the delta distribution input used to define the antenna should be modified to lie along a slanted line.
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