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Parameter estimation versus homogenization techniques
in time-domain characterization of composite dielectrics

H. T. Banks, V. A. Bokil, and N. L. Gibson

Abstract. We compare an inverse problem approach to parameter estimation with homogenization
techniques for characterizing the electrical response of composite dielectric materials in the time
domain. We first consider an homogenization method, based on the periodic unfolding method, to
identify the dielectric response of a complex material with heterogeneous micro-structures which are
described by spatially periodic parameters. We also consider electromagnetic interrogation problems
for complex materials assuming multiple polarization mechanisms with distributions of parameters.
An inverse problem formulation is devised to determine effective polarization parameters specific
to the interrogation problem. We compare the results of these two approaches with the classical
Maxwell-Garnett mixing model and a simplified model with a weighted average of parameters.
Numerical results are presented for a specific example involving a mixture of ethanol and water
(modeled with multiple Debye mechanisms). A comparison between each approach is made in the
frequency domain (e.g., Cole-Cole diagrams), as well as in the time domain (e.g., plots of suscepti-
bility kernels).

Key words. homogenization, Maxwell’s equations, electromagnetic interrogation, inverse problems,
parameter estimation, complex dielectric materials, distributions of relaxation parameters, Maxwell-
Garnett mixing rule.
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1. Introduction

In this paper, we consider composite materials that are mixtures of linear, isotropic
and temporally dispersive dielectrics. Composite materials are often used in indus-
try as they have better properties (e.g., electrical, structural) as compared with their
constituents. The dielectric properties of mixtures can differ significantly from the
individual materials from which they are composed. We compare three different time-
domain approaches to characterizing the electrical response of composite dielectrics.
We also consider the approach of using the weighted average of the model parameters
from each of the constituent materials.

First we consider an homogenization method to identify the dielectric response of
a material presenting heterogeneous micro-structures which are described by spatially
periodic parameters. When such composite materials are subjected to electromagnetic
fields generated by currents of varying frequencies, and the period of the structure is
small compared to the wavelength, the spatially dependent coefficients in Maxwell’s
equations oscillate rapidly. These spatially oscillating coefficients are difficult to treat
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numerically in simulations. In the process of homogenization the rapidly oscillating co-
efficients are replaced with new, effective constant (in space) coefficients. The primary
objective of homogenization is to replace a system with periodically varying spatial
coefficients by a limiting homogeneous system that facilitates computation. The ap-
proach that we take here is based on the periodic unfolding method (and its application
to homogenization of Maxwell’s equations) as presented in [1, 7, 9].

In a second method we consider a parameter estimation problem which, rather than
producing a limiting system with effective coefficients, chooses effective coefficients
for a simplified system that best matches the desired output from a specific problem for-
mulation. In particular, we assume an interrogation problem with a given source signal
and known geometry. The data to be fit in a least squares sense is a simulation of the
complex material using a model involving a distribution of polarization mechanisms as
described in [5].

We compare the homogenization and parameter identification technique with re-
sults obtained using the Maxwell-Garnett mixing model [16] of a two-phase mixture
wherein the inclusions are embedded in a matrix material in the form of spheres (in
3D) or circular disks (in 2D) [15]. We also compare the various techniques mentioned
above to a single polarization model which uses the weighted average of the dielectric
parameters of the two different constituents of the composite material.

The outline of this paper is as follows. In Section 2, we describe Maxwell’s equa-
tions and corresponding constitutive relations which govern the evolution of the elec-
tromagnetic field in a temporally dispersive media. This is the framework for the vari-
ous techniques mentioned above.

In Section 3 we present an outline of an homogenization approach, based on the
periodic unfolding method, for calculating effective parameters of composite media.
Using this approach we can calculate the high frequency permittivity of the composite
dielectric as well as a susceptibility function for discrete time values. In this manner
we obtain only time-domain data. However, for ease of comparison with frequency
domain homogenization methods, we can calculate the complex permittivity of the
mixture by performing a discrete Fourier transformation of the susceptibility function
data.

In Section 4 we introduce the parameter estimation method based on an inverse
problem formulation. Given data, and a proposed model for simulating an approxima-
tion to the data, the inverse problem formulation allows one to determine the model
parameters which best match the data in the least squares sense. In the case where
the proposed model uses a single polarization mechanism with scalar parameters, the
inverse problem method produces effective model parameters similar to an homoge-
nization method. However, the approach is sufficiently general to return a distribution
of parameters and/or mechanisms (see [5]). Furthermore, this parameter estimation
method is capable of using either simulated or real data in the inverse problem. The
method makes no assumption on the geometry of the mixture, rather it assumes a per-
fectly homogeneous composite. However, as this approach does use information about
the interrogating fields, unlike the homogenization methods, it can be tailored to spe-
cific nondestructive evaluation (NDE) applications with narrow frequency bands.
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The Maxwell-Garnett mixing model presented in Section 5 is also an homogeniza-
tion type method, but in order to distinguish it from the method described in Section 3,
we will refer to it only as amixing rule. It can be used to calculate an effective com-
plex permittivity of the composite in the frequency domain as well as the susceptibility
function values in the time domain. In the Maxwell-Garnett model, it is assumed that
one of the components of the mixture exists as spherical (3D) or circular (2D) in-
clusions inside a background material (ellipsoidal inclusions can also be considered).
The homogenization method assumes that the composite has a periodic microstructure
where one of the components in the mixture exists as inclusions of a certain geometry
inside a background matrix made up of the other component of the mixture. However,
unlike the Maxwell-Garnett rule, the geometry of the microstructure is not limited to
circular or spherical geometry. For a proper comparison, in this paper we do assume a
circular geometry for the microstructure. For both the homogenization method based
on periodic unfolding as well as the Maxwell-Garnett model, knowledge of the volume
proportions of the components of the mixture is needed in order to calculate effective
parameters of this composite dielectric.

In Section 6, we present comparisons of these three techniques, along with a sim-
ple model involving the weighted average of the dielectric parameters from each con-
stituent material. Time domain comparisons include plots of the susceptibility func-
tion, while the frequency domain comparisons involve various plots of the complex
permittivity. Finally, we conclude with a summary of results and a discussion of the
advantages and disadvantages of the different techniques in Section 7.

2. Maxwell’s equations in a dispersive medium

We employ Maxwell’s equations for a linear and isotropic medium in a form that in-
cludes terms for the electric polarization given by

∂D
∂t

−∇×H = J in (0, T )×Ω,

∂B
∂t

+∇×E = 0 in (0, T )×Ω,

E× n = 0 on (0, T )× ∂Ω,

E(0,x) = 0, H(0,x) = 0 in Ω,

(2.1)

along with zero Gauss divergence laws (∇·D = 0,∇·B = 0 in (0, T )×Ω). HereΩ ⊂
Rn, n = 1, 2, 3. The vector valued functionsE andH represent the strengths of the
electric and magnetic fields, respectively, whileD andB are the electric and magnetic
flux densities, respectively. The source current density is given byJ. We assume
that there are no free electric charges unaccounted for in the electric polarization. We
use perfectly conducting boundary conditions on the boundary∂Ω, with unit outward
normaln and also assign zero initial conditions for all the unknown fields. System (2.1)
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is completed by constitutive laws that embody the behavior of the material in response
to the electromagnetic fields. These are given in(0, T )×Ω in the form D(t,x) = ε0εr(x)E(t,x) + P(t,x),

B(t,x) = µ0H(t,x),
(2.2)

whereε0, andµ0 are the permittivity and the permeability of free space, respectively,
εr is the relative permittivity of the medium under investigation andP is the media’s
macroscopic electric polarization. For the media that is of interest to us, we have
neglected magnetic effects and we have assumed zero conductivity. To describe the
behavior of the media’s macroscopic electric polarizationP, we employ a general in-
tegral representation model in which the polarization explicitly depends on the past
history of the electric field. This convolution model is sufficiently general to include
microscopic polarization mechanisms such as dipole or orientational polarization as
well as ionic and electronic polarization and other frequency dependent polarization
mechanisms. The resulting constitutive law can be given in terms of a susceptibility
kernelg, also known as the dielectric response function (DRF), by

P(t,x) = g ? E(t,x) =
∫ t

0
g(t− s,x)E(s,x) ds. (2.3)

2.1. The Debye model of orientational polarization

The constitutive law (2.2)–(2.3) is sufficiently general to include models based on dif-
ferential equations and systems of differential equations or delay differential equations
whose solutions can be expressed through fundamental solutions (in general variation-
of-parameters representations)–see [4] for details. A number of known polarization
laws can be readily treated. The choice of the kernel function

g(t,x) =
ε0(εs(t,x)− ε∞(t,x))

τ(t,x)
e−t/τ(t,x), (t,x) ∈ (0, T )×Ω (2.4)

in the dielectric corresponds to the differential equation of theDebye modelfor orien-
tationalor dipolar polarizationgiven by

τ(t,x)Pt(t,x) + P(t,x) = ε0(εs(t,x)− ε∞(t,x))E(t,x), (2.5)

D(t,x) = ε0ε∞(t,x)E(t,x) + P(t,x). (2.6)

Hereεs is the static relative permittivity. The presence of instantaneous polarization
is accounted for in this case by the coefficientεr = ε∞ in the electric flux equation.
The remainder of the electric polarization is seen to be a decaying exponential with
relaxation parameterτ , driven by the electric field, less the part included in the in-
stantaneous polarization. This model was first proposed by Debye [11] to model the
behavior of materials that possess permanent dipole moments. The magnitude of the
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polarization termP represents the degree of alignment of these individual moments.
The choice of coefficients in (2.5) gives a physical interpretation toεs andε∞ as the
relative permittivities of the medium in the limit of the static field and very high fre-
quencies, respectively. In the static case, we havePt = 0, so thatP = ε0(εs − ε∞)E
andD = εsε0E. For very high frequencies,τPt dominatesP so thatP ≈ 0 and
D = ε∞ε0E.

3. Homogenization model in two dimensions

We assume that our problem possesses uniformity in the spatial directionx2, so that
all derivatives with respect tox2 are assumed to be zero. In this case Maxwell’s equa-
tions decouple into two different modes, thetransverse electric(TE) andtransverse
magnetic(TM) modes. Here, we are interested in the TE mode for which the electric
field has two nontrivial components,E = (Ex1, Ex3)T , and one nontrivial component
H = Hx2 of the magnetic field. Similarly, the flux densities areD = (Dx1, Dx3)T , and
B = Bx2. The system then reduces to vectors depending on two variables,x1 andx3.

Let Ω now be a subset ofR2 with x = (x1, x3) ∈ R2. Let us define the vector of
fields

u = (uT
1 , u2)T = (ET ,H)T ∈ W 1,1(0, T ; H1(Ω; R3)), (3.1)

and the operator

Lu(t,x) =

 D(t,x)

B(t,x)

 , (3.2)

which from (2.2)–(2.3) can be written as

LTEu(t,x) = ATE(x)u(t,x) +
∫ t

0
CTE(t− s,x)u(s,x) ds. (3.3)

The two 3× 3 coefficient matrices in (3.3) are defined as

ATE =

ATE
11 0

02 µ0

 ; CTE =

CTE
11 0

02 0

 , (3.4)

with

ATE
11 (x) =

ε0εr(x) 0

0 ε0εr(x)

 ; CTE
11 (t,x) =

g(t,x) 0

0 g(t,x)

 , (3.5)

where in the above definitions02 is the 2× 2 matrix of zeros. Next, we define the
Maxwell curl operatorMTE as

MTEu(t,x) = MTE

 E(t,x)

H(t,x)

 , (3.6)
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where the operatorMTE can be expressed as the matrix operator 0 0 −∂x3

0 0 ∂x1

∂x3 −∂x1 0

 . (3.7)

Thus Maxwell’s equation can be rewritten in the form
(i)

d

dt
LTEu = MTEu + J in (0, T )×Ω,

(ii) u(0,x) = 0 in Ω,

(iii ) u1(t,x)× n(x) = 0 on (0, T )× ∂Ω,

(3.8)

whereLTE is the operator associated with the constitutive law (3.3), andMTE is the
Maxwell operator (3.6).

We assume that the structure that occupies the domainΩ entails periodic micro-
structures leading to matricesATE,BTE andCTE with spatially oscillatory coefficients.
Specifically, we will assume thatεr andg are rapidly oscillating spatial functions.

3.1. The Homogenized solution

The outline presented in this section is based on results from [1, 7]. We denote byY α

the reference cell of the periodic structure that occupiesΩ ⊂ R2 (see Figure 1). Let
x,y ∈ R2 with x = (x1, x3) andy = (y1, y3). We will usex ∈ R2 for points on
the macro scale, andy ∈ R2 for points on the micro scale (reference cell). Since
we assume uniformity in thex2-direction, we may have as before all derivatives with
respect tox2 (or y2 in the micro-scale) zero. In this case the homogenized solution
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Figure 1. Periodic composite material presenting a circular micro-structure with peri-
odicity α. The figure showsα decreasing from left to right.
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u = (Ex1, Ex3,Hx2)T for the TE mode appears in a formal asymptotic expansion, or
two-scale expansion (see [1]), given using a corrector term ¯u(t,x,y) by

Eα
x1

= Ex1 + ∂y1ū(t,x,y) + . . . , (3.9a)

Eα
x3

= Ex3 + ∂y3ū(t,x,y) + . . . , (3.9b)

Hα
x2

= Hx2, (3.9c)

where the electromagnetic fielduα = (Eα
x1

, Eα
x3

,Hα
x2

)T is the solution to an evolution
problem of type (3.8) on a domainΩ with a microstructure of periodicityα. Hence the
homogenized electric field solution for the TE mode appears in the formal expansion

Eα = E +∇yū(t,x,y) + . . . . (3.10)

Since we are assuming uniformity in thex2 direction, there is no correction of the
magnetic field solution.

The solution of the first corrector term ¯u ∈ W 2,1(0, T ; H1
per(Y ; R)), from the

two scale expansion, depends on the calculation of twocorrector sub-terms ¯wA
k ∈

H1
per(Y ; R) and w̄k ∈ W 1,1(0, T ; H1

per(Y ; R)), which are solutions to the corrector
equations



(i)
∫

Y

ATE
11 (y)∇yw̄A

k (y) · ∇yv̄(y) dy = −
∫

Y

ATE
11 (y)ek · ∇yv̄(y) dy,

(ii)
∫

Y

ATE
11 (y)∇yw̄k(t,y) · ∇yv̄(y)dy

+
∫

Y

∫ t

0
CTE

11 (t− s,y)∇yw̄k(s,y) ds· ∇yv̄(y)dy

= −
∫

Y

CTE
11 (t,y)

{
ek +∇yw̄A

k (y)
}
· ∇yv̄(y) dy,

(3.11)

for all v̄ ∈ H1
per(Y ), k = 1, 2. The vectorsek, k = 1, 2 are the basis vectors inR2 with

e1 = (1, 0)T , e2 = (0, 1)T . The gradient operator in this case is∇y = (∂y1, ∂y3)T . The
first corrector term ¯u can now be calculated as

ū(t,x,y) = w̄A(y)E(t,x) +
∫ t

0
w̄(t− s,y)E(s,x) ds, (3.12)

wherew̄A ∈ R1×2 with components{w̄A
k }2

k=1. Similarly w̄ ∈ R1×2 with components
{w̄k}2

k=1.
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Once we have solved for these corrector terms, we can then construct the homoge-
nized matrices from

(i) (ATE
11 )k =

∫
Y

ATE
11 (y)

{
ek +∇yw̄A

k (y)
}

dy,

(ii) (CTE
11 )k(t) =

∫
Y

CTE
11 (t,y)

{
ek +∇yw̄A

k (y)
}

dy +
∫

Y

ATE
11 (y)∇yw̄k(t,y) dy

+
∫

Y

∫ t

0
CTE

11 (t− s,y)∇yw̄k(s,y) ds dy,

(3.13)
where,(ATE

11 )k and (CTE
11 )k are thekth columns of the 2× 2 matricesATE

11 andCTE
11 ,

respectively, and the homogenized matrices are given by

ATE =

ATE
11 0

0 µ0

 , CTE =

CTE
11 0

0 0

 . (3.14)

The corresponding system of equations in the TE mode are
(i)

d

dt
LTEu = MTEu + JTE

s in (0, T )×Ω,

(ii) u(0,x) = 0 in Ω,

(iii ) u1(t,x)× n(x) = 0 on (0, T )× ∂Ω,

(3.15)

whereu = (Ex1, Ex3,Hx2)T , n = (nx1, nx3)T is the unit outward normal vector to∂Ω,
and the operatorLTE is defined as

LTEu(t,x) = ATEu(t,x) +
∫ t

0
CTE(t− s)u(s,x) ds. (3.16)

If the initial conditions are nonzero, additional corrector terms and corrector equations
are involved, and then there is a supplementary source termJ 0 that should be intro-
duced in the right side of (3.15,i). See [7] for more details.

3.2. Numerical discretization for the cell problem

The spatial discretization of the cell problem can be done using piecewise bilinear finite
elements. For the time discretization we use an approach that involves calculating the
convolution recursively. Since the susceptibility kernelg(t,x) is exponential in nature
for many materials of interest, we can use recursion to compute the discretized time
convolution of the susceptibility kernel with the gradient of the corrector terms in the
corrector subproblem (3.11,ii) and the construction (3.13,ii). The discrete gradient of
the corrector term is assumed to be constant on each equally spaced interval of time∆t.
The details of the method summarized here may be found in [1]. A similar approach
known as the recursive convolution (RC) method has been used to compute the discrete
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convolution terms that appear in Maxwell’s equations [13, 14]. We show in [1] that
the discrete convolution of all previous field values of the gradient of the corrector
terms and the discrete susceptibility function can be reduced to recursive updating of a
single vector on each element in the finite element mesh; this involves a matrix vector
multiplication at each time step.

4. Parameter estimation

We next formulate an inverse problem for the determination of parameters for a model
which describes the dielectric response of complex materials in the context of electro-
magnetic interrogation. It is well known that, in general, dielectrics are most accurately
modeled by a distribution of parameters [8], although using a distribution of parameters
in practice is sometimes computationally intensive. Thus there is a need to determine
single, effective parameters. The comparison of several ways to do this is the precisely
the subject of this paper.

In [5] it was shown that the inverse problem for the actualdistributionis well posed.
In fact, distributions of mechanisms (e.g., mixtures of Debye and Lorentz materials)
could also be handled in the same framework. Using this theory as a foundation, we
consider the inverse problem wherein parameters for asimplifiedmodel are estimated.
The most simplified case of a single mechanism involving a delta distribution of the
parameter set results in the determination of effective model parameters as produced
in homogenization techniques. However, unlike homogenization methods, the inverse
problem formulation has the flexibility to use either real data or simulated data obtained
by using a suitable forward solve. Further, as the electromagnetic interrogation of an
object generally involves a relatively narrow range of frequencies, the inverse problem
based parameter estimation is designed to essentially match the dielectric response of
the material in the frequency band of interest. This is unlike homogenization methods
which do not take the interrogating frequency into account.

4.1. Distributions of mechanisms and parameters

As before, we consider the electric fieldE and the magnetic fieldH to be governed by
Maxwell’s equations in a domainD = Ω0 ∪Ω whereΩ contains the dielectric and the
ambientΩ0 is treated as a vacuum. (See Figure 2 for a schematic of a sample domain.)

Our main focus in this section is the dielectric polarizationP which we assume
has the general convolution form given in (2.3). In every practical example (Debye,
Lorentz, etc.) DRF’s are parameter dependent as well as time (and possibly space)
dependent; we represent this asg = g(t,x; ν), where typicallyν contains parameters
such as the high frequency limit dielectric permittivityε∞, the static permittivityεs, and
relaxation timeτ . An example of an often-used DRF is the Debye model (described
in Section 2.1). Allowing for a distributionF of parametersν over some admissible
setN , we generalize the polarization law (2.3) to

P(t,x; F ) = g ? E(t,x) =
∫ t

0

∫
N

g(t− s,x; ν)E(s,x)dF (ν)ds. (4.1)
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Figure 2. Snapshot of a simulation of a truncated sine wave partially reflecting from
and partially penetrating a sample material. Thez-axis represents a sample 1D domain

We expect to choseF from (or from asubsetof) the spaceF = P(N ) of all prob-
ability measuresF on N . We could further generalize (4.1) to allow for dielectric
materials with multiple mechanisms or multiple DRF’s (i.e., heterogeneous molecular
structures) by considering a family of possible DRF’s and distributions over this family
as described in [5]. For now we will restrict our efforts to single mechanisms.

4.2. Inverse problem formulation

In [5] the focus was to determine the parameters of distributions in an inverse problem
formulation in order to accurately describe the electrical response of complex mate-
rials. In this effort we attempt to find a single set of effective parameters that “best”
describe this response for a specific interrogating source. In other words, we are at-
tempting to find the distributionF in the subset ofF = P(N ) which corresponds to
all single delta distributions, even though the data may (and does!) come from simula-
tions involving more than just a single parameter set.

Formally, we consider the Maxwell system (2.1)–(2.2) with polarizationP =
P(t,x; F ) given by (2.3). Let

z(t,x; F ) =

(
E(t,x; F )
H(t,x; F )

)
,

with (t,x) → z(t,x; F ) mapping from(0, T ) × Ω to R6. We assume we are given
datad̄ = {di}n

i=1 corresponding to observations ofCAz(ti, · ; F ). HereCA denotes
evaluation of one or more components ofE or H at an antenna{xA}. We use this data
to estimate the parameter distributionF in an ordinary least squares (OLS) formulation,
seeking to minimize

J(F ) =
n∑

i=1

|CAz(ti, · ; F )− di|2, (4.2)

over some subspace the spaceF = P(N ) of all probability measuresF onN .
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For this particular effort, we are concerned with comparing the inverse problem
based parameter estimation method to other methods of determining effective param-
eters. Thus, while the synthetic data is generated using the general formulation of the
polarization law (4.1), the forward solves in the inverse problem will be limited to a
single polarization mechanism with a single parameter setν, namely, equation (2.3).

4.3. Numerical results

As our inverse problem approach does not depend on the inclusion geometry, we may
consider a 1-D example as explained in detail in [6]. Restricting to one dimension, and
usingD = εE + P , we can write Maxwell’s equations in second order form as

µ0εË + µ0IΩP̈ − E′′ = −µ0J̇s in Ω ∪Ω0 = [0, b], (4.3)

whereE is thek̂ or z component of the electric field, andε = ε0(1+IΩ(ε∞−1)). Here,
IΩ denotes the indicator function on the dielectric mediumΩ. The (now scalar) polar-
ization is still determined by equation (2.3), however with the vector valued electric
field E replaced by the scalarE. We assume zero initial conditions forE andP ,

P (0, z) = E(0, z) = Ė(0, z) = 0.

Lastly, we have absorbing boundary conditions atz = 0 and reflecting conditions at
z = b, namely [

Ė − cE′
]
z=0 = 0

E(t, b) = 0,
(4.4)

wherec2 = 1/(ε0µ0).
The numerical method employed involves a linear Finite Element Method for spatial

discretization, and a centered difference for the temporal discretization. For details,
see [3].

We choose to consider a mixture of two Debye materials, for which the parameter
identification procedure will attempt to find parameters for a single Debye model such
that the resulting simulations best match, in a least squares sense, the data generated
from the mixture. The substance that is being interrogated is a mixture of 80% water
and 20% ethanol (see [2] for additional results for problems with 50%− 50% and
20%− 80% volume fractions). For ethanol, we used the following parameters in a
Debye polarization model:τ1 = 1.01× 10−11, εs,1 = 80.1, andε∞,1 = 4.9. The
Debye parameters for ethanol areτ2 = 1.2× 10−10, εs,2 = 25.1, andε∞,2 = 4.4.

We assume the interrogating signal to be a single cycle truncated sine curve with
carrier frequency 109 Hz. Note that this frequency is below the weighted average re-
laxation frequencyf = 1/τ̃ , with τ̃ = ατ1 +(1−α)τ2 (hereα = .8 is the volume frac-
tion of water), and therefore we expect that the optimal single relaxation time should
be close to this average value [5]. Further, for simplicity of computations, we take the
value ofε∞ in the single Debye model to be the weighted average of mixture, namely
ε∞,eff = αε∞,1 + (1− α)ε∞,2. This results in a two parameter inverse problem forτ
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Figure 3. The left plot depicts the objective function for the parameter identification
problem versus the log ofτ andεs. The right plot presents a closer view of the objective
function, with the initial value marked with an “O” and the optimal value marked with
an “X”

andεs. The interrogating source and the signal receiver are both located atz = 0 (see
Figure 2). For this test problem, the cost functional is

J(τ, εs) =
n∑

i=1

|E(ti, 0;τ, εs)− di|2. (4.5)

A surface plot of the cost functionalJ is displayed in the left plot of Figure 3. Note
that there is a large positive peak centered atεs = 60. We do not have to resort to
taking the absolute value of the electric field, as described in [5], since our starting
point for the optimization method is closer to the minimum than this peak. The right
plot of Figure 3 presents a zoom of the surface plot. The initial starting point used in the
optimization method is marked with an “O”. This value is simply the weighted average
of τ and εs over the material. The resulting optimum value from the optimization
method is marked with an “X”.

For the optimization method, we use a Levenberg-Marquardt method with implicit
filtering. As the cost functional is significantly more sensitive to theεs direction
than theτ direction, taking a Newton step in both directions at the same time gen-
erally results in an increased value of the cost function. Rather than increasing the
Levenberg-Marquardt parameter immediately (i.e., performing a pull-back on the line-
search which results in a shorter step), we test the possibility that taking just one of the
directions will give an actual reduction in the objective function. The addition of these
two function evaluations, when the cost is not decreased by the original step, saved ap-
proximately 70% of the pull-backs on line-searches versus the traditional Levenberg-
Marquardt method, and led to faster convergence. Table 1 contains the initial values
of log(τ), εs and J , as well as the optimized values after 49 Levenberg-Marquardt
iterations (231 function calls, 5089 seconds).

To see the improvement in the fit-to-data of the optimal value response over that
of the weighted average in matching the multiple Debye signal, we plot in Figure 4



Characterization of composite dielectrics 31

log(τ) εs J

Initial −10.7807 69.1 0.350694
Optimal −10.7933 67.5529 0.0122314

Table 1. Initial values and values resulting from Levenberg-Marquardt optimization of
the 80-20 water-ethanol mixture interrogated atf = 109 Hz

0 5 10 15 20 25 30
200

150

100

50

0

50

100

150

200

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

 

 

16 17 18 19 20
 10

0

10

Multiple Debye
Weighted average
Inverse problem

Figure 4. Comparison of multiple Debye data to the forward simulation using the
weighted average Debye parameter values and the forward simulation using optimal
values from the single Debye inverse problem

the resulting simulations and the original data computed using a discrete distribution
of two Debye models. The inset shows a closer view of the full signal reflected from
the back boundary (the only useful information in determining the electrical response
in an experiment). It is clear from the figure that the weighted average parameters
do not result in a signal that matches the double Debye data. The optimal parameters
however produce a signal that is very similar to the data, although still distinguishable.
Even for this simple example it is apparent that no single Debye model can produce a
simulation exactly matching the double Debye model. However when an approximate
result is sufficient and the savings in computational time important, then the optimal
parameters from an inverse problem formulation provide an alternative to modeling a
complex material using distributions of parameters and mechanisms.

5. The Maxwell Garnett model

We will compare the homogenization method and the parameter identification tech-
nique presented above to the Maxwell-Garnett (MG) model of a two-phase mixture
wherein the inclusions are embedded in the environment in the form of spheres (in 3D)
or circular disks (in 2D). As in the case of the other techniques, we assume that both
the temporally dispersive materials are isotropic, homogeneous and non-magnetic.
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A direct time-domain approach that has been developed in [15] expresses the ef-
fective permittivity of a mixture as an operator form MG expression that includes the
susceptibility kernels and high frequency responses of the component materials. The
evaluation of the effective permittivity operator requires the calculation of convolutions
and operator inverses. The inverse of the convolution operators encountered in these
problems can be solved from Volterra equations of the second kind, which have unique
and well behaved solutions. The advantage of the time-domain formulation is that the
results are more intuitive physically than those in the frequency domain. When both
constituent materials are dispersive, the dispersion of the mixture is in general more
complicated than that of the inclusion. Even for the simplest case of Debye inclusions
in a Debye background, the effective complex permittivity is neither of Debye nor of
Lorentz form, but contains higher powers of the frequencyω in both the numerator and
the denominator.

For the example of an 80% water and 20% alcohol mixture, an explicit expression
for the effective susceptibility kernel is given in Sec 5.B.3 of [15]. The analysis in [15]
is restricted to the case of spherical (circular in 2D) inclusions. The homogenization
technique presented in Section 3, however, does not have this restriction.

6. Comparison of methods

While the inverse problem approach is designed to output a single parameter set for
use in a simple Debye polarization model formulation, the homogenization method
used here produces a dielectric response function defined at specified time points. To
compare the two methods we may use the fact that the DRF for the Debye model is
given by (2.4). The left plot of Figure 5 depicts the DRFs for the inverse problem result,
the solution from the homogenization approach, as well as the curves for a Debye
model of pure water and for pure ethanol. In the right plot of Figure 5 we compare
the DRF from the inverse problem and homogenization approaches to the MG mixing
rule result and the DRF obtained by using the weighted average of values in the Debye
model (2.4). The inverse problem DRF is nearly indistinguishable from that of the
weighted averages; however, the difference between the corresponding outputs from
the interrogation simulations was clearly seen in Figure 4.

In order to examine the differences in the frequency domain we must compare the
resulting complex permittivity. For the Debye polarization model, the (relative) com-
plex permittivity is given by

ε(ω) = ε∞ +
εs − ε∞
1 + iωτ

.

However, the homogenization approach used here does not output a complex permit-
tivity directly. One must take the DFT of the DRF to get the permittivity. The real and
imaginary parts of the permittivity resulting from the homogenization approach and
the inverse problem approach, are plotted in Figure 6, along with the values for pure
water and pure ethanol.
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Figure 5. The left side presents a plot of the DRF resulting from the homogenization
approach and the inverse problem approach, along with the plots for the Debye model
of water and ethanol The right side depicts the same for the homogenization and in-
verse problem approaches, along with the DRFs computed using the Maxwell-Garnett
mixing formula and a weighted average. The DRF of the weighted average approach
and the inverse problem method are nearly indistinguishable
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Figure 6. The left (right) graph depicts the real (negative imaginary) part of the permit-
tivity resulting from the homogenized DRF and the inverse problem approach, along
with the values for pure water and pure ethanol

In Figure 7 the real and imaginary parts of the permittivity from the homogenization
approach and the inverse problem approach are compared to the values resulting from
taking the weighted average of parameters and the Maxwell-Garnett mixing method.
The peaks in the plots of the imaginary parts denote the frequency at which the maxi-
mum attenuation of the field in the material occurs, (in the Debye case it is known as
the relaxation frequency). Note that both the Maxwell-Garnett and the homogenization
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Figure 7. The left (right) graph presents the real (negative imaginary) part of the
permittivity resulting from the homogenized DRF and the inverse problem approach,
along with the values computed using a weighted average and the Maxwell-Garnett
mixing formula
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Figure 8. The left plot depicts the Cole-Cole diagram of the complex permittivity
resulting from the homogenization approach and the inverse problem approach, along
with the values from the Debye model for water and ethanol. The right plot presents the
same for the homogenization and inverse problem approaches, along with the values
computed using the Maxwell-Garnett mixing formula and a weighted average

methods have peaks very close to that of water. Both the parameter estimation method
and the approach using weighted average of parameters result in peaks very close to
the weighted average of the relaxation frequencies of water and ethanol.

Cole and Cole [10] proposed an empirical function for use in fitting dielectric data.
The Debye model presented in Section 2.1 is a special case of this Cole-Cole model.
The Cole-Cole function (including Debye) leads to a distinctive semicircular plot in the
complex permittivity plane. As the frequency is varied, a plot of the imaginary part of
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the complex permittivity versus the real part describes a circular arc [12] which among
other names is called the Cole-Cole diagram.

The Cole-Cole diagrams corresponding to the complex permittivities shown in Fig-
ures 6 and 7 are shown in the left and right plots of Figure 8.

The Cole-Cole diagram for a Debye model is a semi-circle and the peaks corre-
spond to the relaxation frequency. As both the weighted average values and the inverse
problem approach use the Debye model, their diagrams are semi-circles. Both the
Maxwell-Garnett rule and the homogenization method have more complex Cole-Cole
diagrams as evidenced by the bend in the curves. This discrepancy from the Debye
model is more pronounced at the lower frequencies for this volume fraction.

7. Conclusions

The Maxwell-Garnett mixing rule is only valid for spherical or circular inclusions (el-
lipsoidal inclusions can also be considered). The periodic unfolding homogenization
method allows for any two or three dimensional geometry. It is important to note that
the results of all homogenization techniques (including MG) are valid when the size of
the inclusion are small in comparison with the wave length of the sources and fields.
For higher frequencies scattering effects are no longer negligible. A second advantage
of the homogenization method presented here is the flexibility it affords in assump-
tions about material polarization laws. In this paper we have computed the DRF for
a Debye-Debye mixture using a recursive convolution method. The recursive convo-
lution approach can be extended to the cases of mixtures involving Lorentz or higher
order dispersive media in which the DRF is exponential in nature.

A mixture of materials, which may each be described by the same simple model, in
general will not be accurately described by that same model. For example, a Debye-
Debye mixture has an effective complex permittivity which is not of Debye form, nor
even of Lorentz form. The homogenization methods described here attempt to capture
this complexity. However, for certain applications it is not necessary to have a high
level of accuracy for frequencies which do not appear in the problem, especially if the
added complexity necessary for increased accuracy is cost-prohibitive. For example,
in a simulation with an interrogating signal of narrow frequency band, the complex
permittivity need only be accurate in those frequencies. Using an inverse problem
formulation designed around the specific fields of interest can give a cost-effective
method for modeling complex materials with relatively simple formulas.

As mentioned earlier, for both the homogenization method based on periodic unfold-
ing as well as the Maxwell-Garnett model, knowledge of the volume proportions of the
components of the mixture is needed in order to calculate effective parameters of this
composite dielectric. However, the parameter estimation method is capable of using
experimental data in the inverse problem, in which case there would be no assumptions
needed on the volume fraction or dielectric parameters except perhaps in formulating a
sufficiently accurate initial value for faster convergence of the optimization routine. In
generating synthetic data however, one must of course have the volume proportions, as
well as dielectric parameters for each material, including possibly distributions of pa-
rameters. While there is a large initial investment in computational time to perform the
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many forward solves needed to determine the optimal parameter set, having effective
parameters for a simplified model which closely matches the data of interest may lead
to significant savings in later simulations such as in geometric inverse problems involv-
ing crack or flaw detection. One of the biggest advantages to using the inverse problem
parameter estimation approach is that it may be tailored to specific applications with
narrow frequency bands such as those that often occur in the fields of non-destructive
evaluation (NDE) or remote sensing.
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