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We study the stability properties of, and the phase error present in, a finite element scheme for Maxwell’s
equations coupled with a Debye or Lorentz polarization model. In one dimension we consider a second order
formulation for the electric field with an ordinary differential equation for the electric polarization added as
an auxiliary constraint. The finite element method uses linear finite elements in space for the electric field
as well as the electric polarization, and a theta scheme for the time discretization. Numerical experiments
suggest the method is unconditionally stable for both Debye and Lorentz models. We compare the stability
and phase error properties of the method presented here with those of finite difference methods that have
been analyzed in the literature. We also conduct numerical simulations that verify the stability and dispersion
properties of the scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 00: 000–000, 2008
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I. INTRODUCTION

Noninvasive interrogation of the interior of tissues and other materials by electromagnetic waves
has important applications in various fields including medical imaging for the early detection
of anomalies and nondestructive damage detection in aircraft [1, 2]. For example, microwave
imaging for breast cancer detection is expected to be safe for the patient and has the potential to
detect very small cancerous tumors in the breast [3]. This ability for detection is based on the
difference in electrical properties of malignant and normal tissues. Biological tissue interactions
with the fields are defined by their complex permittivity, which is a function of the various electric
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and magnetic polarization mechanisms and conductivity of the biological medium. Similarly,
nondestructive damage detection in materials for the detection of defects such as cracks is based
upon the changes in the electrical properties that occur due to the presence of these defects. Thus,
one aim of electromagnetic interrogation is the determination of the dielectric properties of the
materials under investigation.

To computationally simulate these electromagnetic interrogation problems requires setting up
a suitable inverse problem, which involves numerous forward simulations of the propagation of
transient electromagnetic waves in lossy dispersive dielectrics, such as biological tissue. Hence,
the development of accurate, consistent and stable discrete forward solvers is very important, as
errors in the numerical solvers can result in inaccurate determination of the dielectric properties
that determine the characteristics of the material being investigated.

The electric and magnetic fields inside a material are governed by the macroscopic Maxwell’s
equations along with constitutive laws that account for the response of the material to the elec-
tromagnetic field. In special cases Maxwell’s equations can be reduced to a vector wave equation
in the electric or magnetic fields. Numerical approximation algorithms of time-dependent wave
equations and Maxwell’s equations introduce error into the amplitude and speed of the propa-
gating waves. These errors include dissipation, the dampening of some frequency modes, and
dispersion, the frequency dependence of the phase velocity of numerical wave modes in the
computational grid.

Dielectric materials have actual physical dispersion. The complex electric permittivity of a
dielectric medium is frequency dependent (has dielectric dispersion). Thus, an appropriate dis-
cretization method should have a numerical dispersion that matches the model dispersion as closely
as possible. Dielectric materials also have physical dissipation, or attenuation, which must also be
correctly computed by a numerical method. In particular, if a method does not sufficiently damp
initial disturbances, possibly due to round-off error, the method can become unstable. Certain
algorithms have criteria based on discretization parameters to determine when it may be unstable;
these are called conditionally stable methods.

The stability and dispersion properties for the finite difference time domain (FDTD) schemes
applied to Maxwell’s equations in free space are well known (see [4]). Additionally, different
time domain finite element methods have also been devised for the numerical approximation
of Maxwell’s equations in free space (see [5, 6] and the references therein). While free space
analyses for finite element and finite difference methods are well documented, stability and phase
error analysis for dispersive dielectrics has been primarily focused on finite difference methods
(see [4, 7] for standard second order methods and [8] for higher order schemes). The treatment
for finite element methods has been limited to scalar-potential formulations to model dielectric
dispersion at low frequencies ([9]), scalar Helmholtz equation ([10]), and in some cases, hybrid
methods ([11]).

There are several FDTD extensions that have been developed to model electromagnetic pulse
propagation in dispersive media. One technique is to add to Maxwell’s equations a set of ODE’s
that relate the electric displacement �D(t) to the electric field �E(t) [12], or a set of ODE’s that
model the dynamic evolution of the macroscopic polarization vector �P(t) driven by the electric
field [13,14]. Dielectric dispersion can be expressed in the time domain as a convolution integral
involving the electric field and a causal susceptibility function. The recursive convolution method
[15–17] uses a recursive technique to update the convolution representation of the constitutive
law along with the FDTD time update of Maxwell’s equations. There are other methods such
as the Z-transform [18, 19] and the TLM method [20] that have also been used to model pulse
propagation in dispersive media. Many of these methods have been compared and analyzed for
their numerical errors and stability properties [7, 21–24].
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In this article we study the properties of the discretized Maxwell’s equations with Debye or
Lorentz polarization, using a finite element method, in terms of numerical stability and dispersion
analyses. We analyze one dimensional models to which we apply standard linear finite elements
for the spatial discretization of the electric field and the polarization. Maxwell’s equations are
reduced to a wave equation in the electric field, and the constitutive law in the medium involves
an ordinary differential equation that describes the dynamic evolution of the polarization driven
by the electric field. The entire system is rewritten in first order form and time discretized using
a theta scheme.

The numerical stability results for Debye and Lorentz media suggest that the extension of the
finite element scheme for these media retain the unconditional stability property of the scheme in
free space. We obtain information about the expected accuracy of the method from the construc-
tion of the dispersion relation which relates the numerical wave number k to the frequency ω for
waves propagating in the finite element grid and then compare with the dispersion relation for
the corresponding continuous model. We compare the stability and dispersion properties of the
finite element method with those of finite difference methods analyzed in [7]. Such finite element
methods have been used for the electromagnetic interrogation of dielectric media with a metal
backing, for the determination of dielectric properties and geometrical dimensions of the medium
[25], as well as for the detection of cracks in composite materials [26]. In [27], finite element
methods were used to interrogate dielectric media with acoustic waves as virtual reflectors.

The Lax-Richtmyer theorem [28] states that the convergence of consistent difference schemes
to initial value problems represented by PDE’s is equivalent to stability. Thus, unconditional sta-
bility is a desirable property of temporal discretization schemes as it allows the choice of the time
step to be determined by the physical dimensions of the problem, such as a relaxation time. The
FDTD methods, however, are conditionally stable. As the stability condition is determined by
the smallest cell size in the domain, the FDTD analysis of very fine geometric structures requires
a large number of time iterations. In the finite element case unconditional stability allows us to
choose the Courant number, which relates the time step to the mesh step size, to minimize the
numerical phase error.

The numerical dispersion analysis shows that for accuracy we need to resolve the shortest time
scale in the problem which agrees with the result obtained in [7]. This is reflected in the fact that
the time step for simulating Debye media should be chosen to be about O(10−3)τ , where τ is
the relaxation time of the medium, whereas for Lorentz media, the time step should be chosen

to be the minimum of O(10−2)τ and O(10−2)
(

2π

ω0

)
, where ω0 is the resonance frequency of the

medium.
We thus determine a guideline for users in which the time step is chosen to minimize the dissi-

pation of the scheme and the Courant factor is chosen to minimize the phase error, providing good
agreement between the exact and numerical complex permittivity. Finally, we present simulations
that validate our results.

II. MODEL FORMULATION

We consider Maxwell’s equations that govern the electric field �E and the magnetic field �H in a
domain � from time 0 to T given as

∂ �D
∂t

+ �J − ∇ × �H = 0 in (0, T ) × �, (2.1a)
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∂ �B
∂t

+ ∇ × �E = 0 in (0, T ) × �, (2.1b)

∇ · �D = 0 = ∇ · �B in (0, T ) × �, (2.1c)

�E(0, �x) = 0 = �H(0, �x) in �. (2.1d)

The fields �D, �B are the electric and magnetic flux densities respectively. All the fields in (2.1) are
functions of position �x = (x, y, z) and time t . We have �J = �Jc + �Js , where �Jc is a conduction
current density and �Js is the source current density. However, we will assume �Jc = 0 in this
paper, as we are interested in dielectrics with no free charges. Appropriate boundary conditions
are added to system (2.1) to terminate the computational domain.

Constitutive relations, which relate the electric and magnetic fluxes �D, �B to the electric and
magnetic fields �E, �H are added to these equations to make the system fully determined and to
describe the response of a material to the electromagnetic fields. In free space, these constitutive
relations are �D = ε0 �E, and �B = µ0 �H , where ε0 and µ0 are the permittivity and the permeability
of free space, respectively, and are constant [29]. In general there are different possible forms for
these constitutive relationships. In a frequency domain formulation of Maxwell’s equations, these
are usually converted to linear relationships between the dependent and independent quantities
with frequency dependent coefficient parameters. We will consider the case of a dielectric in
which magnetic effects are negligible. Thus, within the dielectric medium we have constitutive
relations that relate the flux densities �D, �B to the electric and magnetic fields, respectively, as

�D = ε0 �E + �P , (2.2a)

�B = µ0 �H . (2.2b)

In (2.2a), the quantity �P is called the macroscopic electric polarization. (A discussion of the rela-
tionship between the macroscopic polarization and the microscopic material properties leading
to distributions of relaxation times and other dielectric parameters in the constitutive laws can
be found in [30].) Electric polarization may be defined as the electric field induced disturbance
of the charge distribution in a region. This polarization may have an instantaneous component
as well as delayed effects; the latter will usually have associated time constants called relaxation
times which are denoted by τ . We define the instantaneous component of the polarization to be
related to the electric field by means of the free space permittivity, ε0, and a susceptibility χ .
The remainder of the electric polarization, called the relaxation polarization, is denoted as �PR.
Therefore, we have

�P = �PI + �PR = ε0χ �E + �PR,

and hence the constitutive law (2.2a) becomes

�D = ε0εr
�E + �PR,

where εr = (1 + χ) is the relative permittivity of the dielectric medium. We will henceforth
denote �PR by �P , as the instantaneous polarization will be absorbed into the dielectric constant εr .
The following section defines the equations for polarization models of interest in this paper.

A. Models for Polarization

To describe the behavior of the media’s relaxation polarization �P , one may use ordinary differ-
ential equation models derived from those that consider microscopic polarization mechanisms
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such as dipole or orientational polarization (Debye), as well as ionic and electronic polariza-
tion (Lorentz), and other frequency dependent polarization mechanisms [31]. For more complex
dielectric materials, a simple Debye or Lorentz polarization model is often not adequate to char-
acterize the dispersive behavior of the material. One can then turn to combinations of Debye,
Lorentz, or even more general nth order mechanisms [25] as well as Cole-Cole type (fractional
order derivative) models [32]. Additionally, materials may be represented by a distribution of the
associated time constants or even a distribution of polarization mechanisms (see [30,33]). In this
report we concentrate our analysis on single pole Debye and Lorentz polarization models.

Debye Model The macroscopic differential equation for the Debye model for orientational or
dipolar polarization is given by

τ
∂ �P
∂t

+ �P = ε0(εs − ε∞) �E. (2.3)

Here εs is the static relative permittivity. The presence of instantaneous polarization is accounted
for in this case by the coefficient εr = ε∞ in the electric flux equation (2.3). The electric polariza-
tion, less the part included in the instantaneous polarization, is seen to be a decaying exponential
with relaxation parameter τ , which is driven by the electric field. This model was first proposed
by Debye [34] to model the behavior of materials that possess permanent dipole moments. The
magnitude of the polarization term �P represents the degree of alignment of these individual
moments and is based on a uniformity assumption at the molecular level (see [30]). The choice
of coefficients in (2.3) gives a physical interpretation to εs and ε∞ as the relative permittivities
of the medium in the limit of the static field and very high frequencies, respectively. In the static
case, we have �Pt = 0, so that �P = ε0(εs − ε∞) �E and �D = ε0εs

�E. For very high frequencies, τ �Pt

dominates �P so that �P ≈ 0 and �D = ε0ε∞ �E (thus the notation of ∞).
The Debye model is most often used to model electromagnetic wave interactions with water-

based substances, such as biological materials. In particular, biological tissue is well represented
by multi-pole Debye models, by accounting for permanent dipole moments in the water. The
Debye model has other physical characteristics which make it attractive from an analytical point
of view (for details, see [21]).

Lorentz Model The Lorentz model for electronic polarization in differential form is represented
with the second order equation:

∂2 �P
∂t2

+ 1

τ

∂ �P
∂t

+ ω2
0

�P = ε0εdω
2
0
�E, (2.4)

where εd = εs − ε∞ and ω0 is the resonance frequency of the material.
The Lorentz model is formulated by modeling the atomic structure of the material as a damped

vibrating system representing a deformable electron cloud at the atomic level [25]. Applying
classical Newtonian laws of motion, we find that the displacement of the outermost shell of the
atom satisfies a second-order ordinary differential equation [21].

B. Reduction to One Dimension

The electric field is assumed to be polarized to have oscillations in the x–z plane only, as described
in [25]. Restricting the problem to one dimension, we can write the electric and magnetic fields,
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�E and �H respectively, as follows

�E(t , �x) = îE(t , z)

�H(t , �x) = ĵH(t , z),

so that we are only concerned with the scalar values E(t , z) and H(t , z). In this case Maxwell’s
equations become

∂E

∂z
= −µ0

∂H

∂t
(2.5a)

−∂H

∂z
= ∂D

∂t
+ Js . (2.5b)

We take the partial derivative of Eq. (2.5a) with respect to z, and the partial of Eq. (2.5b) with
respect to t . Equating the ∂2H

∂z∂t
terms in each, and thus eliminating the magnetic field H , we have

E′′ = µ0(D̈ + J̇s),

where ′ denotes z derivatives and ˙ denotes time derivatives. Using the constitutive law for he
electric flux density given by D = ε0ε∞E + P , we have

µ0ε0ε∞Ë + µ0P̈ − E′′ = −µ0J̇s in � = [a, b]. (2.6)

In order to have a finite computational domain, we impose absorbing boundary conditions at
z = a and z = b, which are modeled as

[Ė − cE′]z=a = 0, [Ė + cE′]z=b = 0,

where c = 1/
√

ε0µ0 is the speed of light in vacuum. With these boundary conditions, any inci-
dent signal passes out of the computational domain, and does not return. The homogeneous initial
conditions in 1D become

E(0, z) = 0, P(0, z) = 0, Ṗ (0, z) = 0, Ė(0, z) = 0.

III. NUMERICAL SOLUTION

We describe in this section the application of finite elements for the spatial discretization of the
model (2.6). The semi-discrete model is then coupled with a polarization model, and the system
is discretized in time using a theta scheme. The resulting methods are compared in subsequent
sections to FDTD methods with respect to stability and dispersion properties.

A. Spatial Discretization Using Finite Elements

We apply a finite element method using standard piecewise linear one dimensional basis elements
to discretize the model (2.6) in space. Let N be the number of intervals in the uniform discretiza-
tion of z, and �z = (b − a)/N ; then the finite element discretization has an order of accuracy of

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ANALYSIS OF STABILITY AND DISPERSION 7

O(�z2). The resulting system of ordinary differential equations after the spatial discretization is
the semi-discrete form

ε∞µ0ε0Më + µ0Mp̈ + Bė + Ke = µ0J , (3.1)

with either p ≡ 0 (Vacuum),

ṗ + λp = ε0εdλe, (Debye Media), (3.2)

or

p̈ + λṗ + ω2
0p = ε0εdω

2
0e, (Lorentz Media), (3.3)

where λ := 1
τ

(the notation := is used to denote “is defined to be”). The vectors e and p represent
the values of E, and P , respectively at the nodes zi = i�z, i = 0, 1, . . . , N . The mass matrix M

has entries

Mij = 〈φi , φj 〉 :=
∫ b

a

φiφjdz,

where {φi}N
i=0 are the basis functions. The stability matrix K has entries

Kij = 〈
φ′

i , φ
′
j

〉
:=

∫ b

a

φ′
iφ

′
j dz.

The matrix B results from the boundary conditions where

Bij = 1

c
[φi(a)φj (a) − φi(b)φj (b)].

Finally, J is defined as

Ji = −〈φi , J̇s〉 := −
∫ b

a

J̇sφidz.

For linear finite elements in one dimension, the entries of the mass matrix M are

Mij =



2�z/3, if 0 < i = j < N ,
�z/3, else if i = j = 0 or N ,
�z/6, else if i = j ± 1.

The entries of the stiffness matrix can be calculated as

Kij =



2/�z, if 0 < i = j < N ,
1/�z, else if i = j = 0 or N ,
−1/�z, else if i = j ± 1.

For Debye media, we differentiate (3.2) and substitute for p̈ into (3.1) to obtain an equation
only dependent explicitly on p, given as

ε∞Më + (B + εdλM)ė + (c2K − εdλ
2M)e + λ2

ε0
Mp = 1

ε0
J , (3.4a)

ṗ + λp − ε0εdλe = 0. (3.4b)
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For Lorentz media we substitute (3.3) into (3.1) to obtain

ε∞Më + Bė + (c2K + εdω
2
0M)e − ω2

0

ε0
Mp − λ

ε0
Mṗ = 1

ε0
J , (3.5a)

p̈ + λṗ + ω2
0p = ε0εdω

2
0e. (3.5b)

B. Time Discretization Using Finite Differences

To solve the semi-discrete form of our equations we may convert each (free space, Debye, Lorentz)
coupled second order system of equations into one larger first order system. Thus, we obtain a
system of equations of the form

M̄Ẋ + K̄X = J̄ , (3.6)

for appropriate matrices M̄ , K̄ and J̄ , and vector X. Applying a theta scheme ([35]) to (3.10) we
obtain a system of equations of the form

(M̄ + θ�tK̄)Xn+1 = (M̄ − (1 − θ)�tK̄)Xn + (θ J̄ n+1 + (1 − θ)J̄ n). (3.7)

For θ = 0.5 the scheme (3.7) can be written as

(
M̄ + �t

2
K̄

)
Xn+1 =

(
M̄ − �t

2
K̄

)
Xn + 1

2
(J̄ n+1 + J̄ n) (3.8)

where, J̄ n = J̄ (n�t) and Xn = X(n�t). As our finite element method is second order in space,
if we choose θ = 1

2 the discretization is second order in time as well (thus, we have used θ = 1
2

throughout). Therefore, for appropriately smooth data and with �t = O(�z), the combined
method is second order in time and space.

For the system of equations corresponding to the Debye model we will consider an additional
method of temporal finite difference for comparison. However, for completeness, we begin with
the simple case of a vacuum.

Free Space (FEM-V) In vacuum we have ε∞ = 1 and P ≡ 0. Thus, in Eq. (3.1) we substitute
p̈ = 0, resulting in

µ0ε0Më + Bė + Ke = µ0J . (3.9)

Rewriting (3.9) in first order form in the variables X = [eT , dT ]T , where d = ė, we have

M̄VẊ + K̄VX = J̄ V, (3.10)

with

M̄V =
[

I 0
0 1

c2 M

]
, K̄V =

[
0 −I

K B

]
, J̄ V =

[
0

µ0J

]
. (3.11)

Using M̄ = M̄V, K̄ = K̄V and J̄ = J̄ V in (3.8) we obtain the fully discretized finite element
method in free space which we denote as FEM-V.
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Debye Media In the first method to be considered for the Debye model, we will convert the cou-
pled second order system of equations into one larger first order system and apply a theta method
as described earlier. In the second method, we will solve first for the polarization with a forward
differencing scheme using the initial conditions, and then use the polarization solution vector to
update a second order central difference scheme for the magnitude of the electric field. We then
continue this process iteratively, alternating between solving for p and for e. Both methods are
second order in time and space for appropriately smooth data (and with �t = O(�z)).

Method 1 (FEM-D1): For Debye media we convert (3.4a)–(3.4b) into a first order system of
equations in three unknowns, X = [eT , pT , dT ]T , where d = ė, resulting in

M̄DẊ + K̄DX = J̄ D, (3.12)

with

M̄D =

 I 0 0

0 I 0
0 0 ε∞M


 , K̄D =


 0 0 −I

−ε0εdλ λ 0

(c2K − εdλ
2M) λ2

ε0
M B + εdλM


 , (3.13)

and

J̄ D =
[

0T 0T 1
ε0

J T
]T

. (3.14)

We apply a theta-scheme with θ = 0.5 to (3.12) to obtain (3.8) with M̄ = M̄D, K̄ = K̄D

and J̄ = J̄ D. As we are assuming a fixed time step �t , the matrix to be inverted does not
change over time. For a discussion of the solution of the associated linear systems we refer
the reader to [36].

Method 2 (FEM-D2): In our second method we use a second order central difference scheme
to solve (3.4a). Our approach is to first solve for p using a θ -method, and then use that
approximation to solve for e at the next time step. Thus, our finite difference approximation
for (3.4b) is

pn+1 = pn − �tλpn+θ + �tλεde
n+θ

where vn+θ = θvn+1 + (1 − θ)vn, for v = e or v = p. This implies

pn+1 = pn + λ�t

1 + λ�tθ
(εde

n+θ − pn). (3.15)

Once we have pn+1 we can solve for en+2. Applying second order central difference with
averaging to (3.4a) gives

1

�t2
ε∞M(en+2 − 2en+1 + en) + 1

2�t
(B + εdλM)(en+2 − en)

+ 1

4
(c2K − εdλ

2M)(en+2 + 2en+1 + en) = 1

ε0
J n+1 − λ2

ε0
Mpn+1.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Defining hτ = λ�t = �t

τ
and solving for the en+2 term we have

[(
ε∞ + εdhτ

2
− εdh

2
τ

4

)
M + 1

2
�tB

]
en+2 =

[(
2ε∞ + εdh

2
τ

2

)
M − c2�t2

2
K

]
en+1

−
[(

ε∞ − εdhτ

2
− εdh

2
τ

4

)
M + c2�t2

4
K + 1

2
�tB

]
en + �t2

ε0
J n+1 − h2

τ

ε0
Mpn+1

(3.16)

or equivalently,

A1e
n+2 = A2e

n+1 + A3e
n + �t2

ε0
J n+1 − h2

τ

ε0
Mpn+1. (3.17)

Again, for θ = 1
2 , (3.15) will be second order in time if the corresponding solution is C3

in time. Equation (3.17) is also second order in time assuming an exact solution for P , and
that E has four continuous time derivatives (for the second order difference approximation).
The truncation error for this approximation is (see [37])

T (tn) = �t2

(
1

12
E(4) + 1

6
E(3) + 1

4
E(2)

)
.

Therefore, since the semi-discrete form is O(�z2), this approximation method overall is
O(�z2) when �t = O(�z).

Lorentz Media (FEM-L) For Lorentz media we consider only the approach of converting
(3.5a)–(3.5b) into a first order system of equations, which with a theta method for the tem-
poral discretization, we will refer to as the FEM-L method. The linear ODE system is in terms
of three unknowns, X = [eT , pT , dT , qT ]T , where d = ė, q = ṗ, and can be written as

M̄LẊ + K̄LX = J̄ L, (3.18)

with

M̄L =




I 0 0 0
0 I 0 0
0 0 ε∞M 0
0 0 0 I


 , K̄L =




0 0 −I 0
0 0 0 −I

(c2K + εdω
2
0M) −ω2

0
ε0

M B − λ

ε0
M

−ε0εdω
2
0 ω2

0 0 λ


 ,

(3.19)

and

J̄ L =
[

0T 0T 1
ε0

J T 0T
]T

. (3.20)

Again, we apply a theta-scheme with θ = 0.5 to (3.18) to obtain (3.8) with M̄ = M̄L, K̄ = K̄L

and J̄ = J̄ L.
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IV. STABILITY ANALYSIS

Fourier analysis is an important tool in the study of stability of finite difference and finite element
schemes. The Fourier transform of a function gives an alternative representation of the function,
and one can infer certain properties of a function from its Fourier transform. The Fourier inversion
formula represents a function as a superposition of waves eiωz with different amplitudes that are
given by the Fourier transform. Under the Fourier transform the operation of differentiation is
converted into the operation of multiplication by iω.

An important application of Fourier analysis is the von Neumann analysis of stability of dif-
ference schemes. With the use of Fourier analysis we can give necessary and sufficient conditions
for the stability of these schemes. For a difference scheme, advancing the solution of the scheme
by one time step is equivalent to multiplying the Fourier transform of the solution by an amplifi-
cation factor. The amplification factor is so called because its magnitude is the amount that the
amplitude of each frequency in the solution, given by the Fourier transform of the solution at time
step n, is amplified in advancing the solution to time step n + 1. All the information of a scheme
is contained in its amplification factor. In particular, the stability and accuracy of schemes can
be determined from the amplification factor. Using Fourier analysis on the scheme to calculate
the amplification factor ζ is equivalent to replacing discrete values of any unknown field vector
vn

m, at time t = n�t and spatial position z = m�z, in the scheme by ζ neimθ for each value of
n and m. The resulting equation is a polynomial in ζ and is called the stability polynomial or
the characteristic polynomial for the scheme. The stability polynomial usually depends on the
discretization parameters, such as the time step and the mesh step size as well as the medium
parameters. The roots of this polynomial can be obtained and will determine the stability of the
scheme. Since the roots of the polynomial are the amplification factors of the scheme, the scheme
will be stable if the amplitude of the roots is less than or equal to 1.

We follow here the approach used in [7] for the FDTD method in order to derive stability
results for the finite element schemes described earlier. We will compare our results with those
obtained in [7] for FDTD schemes treating both Debye and Lorentz models. Namely, for Debye,
we consider the scheme in [12] (which we will refer to as JHT-D) and the scheme in [13] (KF-D).
Regarding the Lorentz model for polarization, we compare results with JHT-L [12] and KF-L
[14].

Note that, since the boundary conditions do not affect the stability and dispersion properties
of the scheme in the interior of the domain, we neglect the effects of boundary conditions, i.e.,
we take B = 0 in (3.1), in our analysis. Further, as the stability and dispersion properties of the
scheme are also independent of the source Js , we take J = 0 in (3.1) without loss of generality.

A. Free Space

We note the following identities associated with the application of the mass and the stiffness
matrices on vectors φn

j = φ̃ζ nei(kj�z)

1. For the mass matrix M we have

Mφn
j = (3 − 2 sin2(k�z/2))

�z

3
φn

j (4.1)

2. For the stiffness matrix K we have

Kφn
j = 4

�z
sin2(k�z/2))φn

j . (4.2)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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We also define two quantities

κ = 3 − 2 sin2

(
k�z

2

)
, (4.3a)

η = 3ν2 sin2

(
k�z

2

)
, (4.3b)

where the Courant number for a general dispersive material is ν = c�t√
ε∞�z

. In free space ε∞ = 1.
To determine the stability criterion for the finite element scheme in vacuum, FEM-V, we now
substitute

Xn
j =

[
en

j

dn
j

]
=

[
ẽ

d̃

]
ζ nei(kj�z),

into the discrete Eq. (3.8) with M̄ = M̄V, K̄ = K̄V and J̄ = J̄ V as given in (3.11) (with
B ≡ 0, J ≡ 0). Here k is the wave number, Using the identities (4.1) and (4.2) we obtain a
homogeneous linear system of the form AX̃ = 0. By setting the determinant of A to zero we
obtain the stability polynomial

ζ 2 − 2ζ

(
κ2 − η2

κ2 + η2

)
+ 1 = 0, (4.4)

From (4.4) we can show that |ζ | = 1 always, regardless of the medium parameters. This implies
that the finite element scheme with the theta method (θ = 1/2) in free space, FEM-V, is
unconditionally stable as well as non-dissipative.

B. Debye Media

To determine the stability conditions for the finite element scheme FEM-D1 described in “Debye
Media” section we substitute

Xn
j =


 en

j

pn
j

dn
j


 =


 ẽ

p̃

d̃


 ζ neikj�z, (4.5)

in the discrete Eq. (3.8) with M̄ = M̄D, K̄ = K̄D and J̄ = J̄ D as given in (3.13)–(3.14) (with
B ≡ 0, J ≡ 0).

As in the case of free space, we obtain a homogeneous system of the type AX̃ = 0. We then
set det(A) = 0 to obtain the stability polynomial

a3ζ
3 + a2ζ

2 + a1ζ + a0 = 0, (4.6)

where the coefficients of the stability polynomial are given by

a3 = η2(hτ + 2) + κ2(hτ εs + 2ε∞), (4.7)

a2 = η2(3hτ + 2) − κ2(hτ εs + 6ε∞), (4.8)

a1 = η2(3hτ − 2) − κ2(hτ εs − 6ε∞), (4.9)

a0 = η2(hτ − 2) + κ2(hτ εs − 2ε∞), (4.10)
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with η, and κ are as defined in (4.3b), and (4.3a), respectively, and as before hτ = λ�t = �t

τ
.

To determine the stability polynomial for the finite element scheme FEM-D2 described in
“Debye Media” section, we substitute (4.5) in the discrete Eq. (3.16) (with B ≡ 0, J ≡ 0).
Following the procedure discussed earlier we obtain the stability polynomial

b3ζ
3 + b2ζ

2 + b1ζ + b0 = 0, (4.11)

with coefficients

b3 = η2(hτ + 2) + κ2(hτ εs + 2ε∞) − κ2h3
τ εd

4
, (4.12)

b2 = η2(3hτ + 2) − κ2(hτ εs + 6ε∞) + κ2h3
τ εd

4
, (4.13)

b1 = η2(3hτ − 2) − κ2(hτ εs − 6ε∞) + κ2h3
τ εd

4
, (4.14)

b0 = η2(hτ − 2) + κ2(hτ εs − 2ε∞) − κ2h3
τ εd

4
. (4.15)

In [36] a plot of max|ζ | versus k�z is given for hτ = 0.1 and hτ = 0.3 for the finite element
schemes FEM-D1 and FEM-D2, with ν = 1. From this plot one can see a slight difference in
the two schemes when hτ = 0.3. However, for hτ = 0.1 the two schemes are indistinguishable.
Therefore, in the rest of this section we will consider only FEM-D1, and may refer to it as the finite
element scheme for the Debye model. Similarly, it was shown in [7] that the stability properties
for the two FDTD methods JHT-D [12] and KF-D [13] are identical. Therefore, in the remainder
of this section we will consider only JHT-D, and may refer to it as the finite difference scheme for
the Debye model. We will compare stability properties of the finite element scheme FEM-D1 with
those of the finite difference scheme JHT-D, understanding that the corresponding conclusions
drawn therein apply equally to the methods FEM-D2 and KF-D.

In the left plot of Fig. 1 we graph the absolute value of the largest root of (4.6), as a function
of k�z, for the finite element scheme FEM-D1 using ν = 1. We can interpret k�z as the wave
number if �z is fixed, or as the inverse of the number of points per wavelength (Nppw) if k is
fixed. In Fig. 2 we plot the absolute value of the largest root of the stability polynomial of the
finite difference scheme JHT [12], with ν = 1 as a function of k�z. In each figure, the right plot
depicts the same quantity, but versus the wave number k.

To generate these plots we assumed the following values of the physical parameters, as
considered in [25] (note that these are appropriate constants for modeling water)

ε∞ = 1, εs = 78.2, τ = 8.1 × 10−12 sec. (4.16)

The time step �t is determined by the choice of hτ and the physical parameter τ . These plots
show varying values of hτ from 0.1 to 0.001. From the plots we can see that the dissipation
of the numerical schemes can be reduced by decreasing hτ . For stability and least dissipation,
hτ = 0.001 is recommended, which is in agreement with the guideline for FDTD. For the finite
element scheme FEM-D1, increasing ν from 1 to 16 does not appear to change the stability behav-
ior of the scheme. This suggests the unconditional stability of the finite element scheme for Debye
media. However, the finite difference scheme is conditionally stable and has the stability criteria
ν ≤ 1. The stability criteria for the finite difference schemes have been derived in [7, 23].
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14 BANKS, BOKIL, AND GIBSON

FIG. 1. Plot on left (right) is of max|ζ | versus k�z (resp., k) for hτ ∈ {0.1, 0.01, 0.001} for the FEM-D1
scheme, with ν = 1.

C. Lorentz Media

To determine the stability conditions for the finite element method applied to the Lorentz media,
FEM-L, we substitute

Xn
j =




en
j

pn
j

dn
j

qn
j


 =




ẽ

p̃

d̃

q̃


 ζ neikj�z,

in the discrete Eq. (3.8) with M̄ = M̄L, K̄ = K̄L and J̄ = J̄ L as given in (3.19)–(3.20) (with
B ≡ 0, J ≡ 0).

As in the case of free space, we obtain a homogeneous system of the type AX̃ = 0. We then
set det(A) = 0 to obtain the stability polynomial

a4ζ
4 + a3ζ

3 + a2ζ
2 + a1ζ + a0 = 0, (4.17)

FIG. 2. Plot on left (right) is of max|ζ | versus k�z (resp., k) for hτ ∈ {0.1, 0.01, 0.001} for the JHT-D
scheme, with ν = 1.
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FIG. 3. Plot on left (right) is of max|ζ | versus k�z (resp., k) for hτ ∈ {0.1, 0.01, 0.001} for the FEM-L
scheme, with ν = 1.

where the coefficients of the stability polynomial are given by

a4 = η2
(
2π 2h2

0 + hτ + 2
) + κ2

(
2π 2h2

0εs + hτε∞ + 2ε∞
)

(4.18)

a3 = η2
(
8π 2h2

0 + 2hτ

) − κ2ε∞(8 + 2hτ ) (4.19)

a2 = η2
(
12π 2h2

0 − 4
) − κ2

(
4π 2h2

0εs − 12ε∞
)

(4.20)

a1 = η2
(
8π 2h2

0 − 2hτ

) − κ2ε∞(8 − 2hτ ) (4.21)

a0 = η2
(
2π 2h2

0 − hτ + 2
) − κ2

(
2π 2h2

0εs − hτε∞ + 2ε∞
)
, (4.22)

with η, and κ as defined in (4.3b), and (4.3a), respectively, hτ = �t/τ , and h0 = �t/T0, with
T0 = 2π/ω0.

We seek to compare the stability properties of FEM-L to the finite difference schemes JHT-L
[12] and KF-L [14]. We plot the absolute value of the largest root of (4.17) for ν = 1 versus k�z

for the FEM-L in Fig. 3 (left), and for the schemes JHT-L and KF-L, we plot the corresponding
functions on the left in Figs. 4 and 5, respectively. In each figure, the right plot depicts the same
function as the left plot, but versus the wave number k.

To generate these plots we assumed the following values for physical parameters, as considered
in [7]:

ε∞ = 1, εs = 2.25, τ = 1.786 × 10−16 sec, ω0 = 4 × 1016 rad/sec. (4.23)

These are typical values that are used in the study of physical optics and are representative of a
highly absorptive and dispersive medium [38]. These values will also be used in our numerical
examples involving the Lorentz polarization model.

For the Lorentz medium, all time scales must be properly resolved, therefore the time step
�t is determined by the choice of either hτ or h0, whichever is most restrictive. For the current
parameter values, T0 < τ , thus h0 is used. The plots show varying values of h0 from 0.1 to
0.001. From the plots we can see that the dissipation of the numerical schemes can be reduced
by decreasing h0. For stability and least dissipation, h0 = 0.01 is recommended, which again is
in agreement with the guideline for the FDTD scheme.
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16 BANKS, BOKIL, AND GIBSON

FIG. 4. Plot on left (right) is of max|ζ | versus k�z (resp., k) for hτ ∈ {0.1, 0.01, 0.001} for the JHT-L
scheme, with ν = 1.

As in the case of the finite element method for Debye media, FEM-D1, we see that increasing
ν from 1 to 16 does not affect the stability properties of the finite element scheme for Lorentz
media, FEM-L (see [36] for details). This suggests the unconditional stability of the finite element
method for Lorentz media. However, again the finite difference scheme is conditionally stable
with the criteria ν ≤ 1. The stability criteria for the finite difference scheme for Lorentz media
have been derived in [7, 23].

V. ANALYSIS OF DISPERSION AND PHASE ERROR

The numerical models presented admit plane wave solutions of the form ei(ωt−�k·�x) for which the
speed of propagation, governed by the wave number �k, erroneously depends on the frequency ω.
The resulting error in the solution, which is an artifact of discretization, is termed as numerical
dispersion. For time-harmonic waves, numerical dispersion results in the creation of a numerical

FIG. 5. Plot on left (right) is of max|ζ | versus k�z (resp., k) for hτ ∈ {0.1, 0.01, 0.001} for the KF-L
scheme, with ν = 1.
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phase velocity error, or phase error, in the solution. This is due to the incorrect modeling of the
sinusoidal behavior of the propagating wave; for example, the piecewise polynomial approxi-
mation of a finite element method does not exactly match a sine or cosine function. Dispersion
is present in numerical approximation methods such as finite difference/finite element methods
even in the absence of any physical dispersion in the actual media. As waves propagate over long
distances numerical dispersion errors accumulate in the solution and may cause it to completely
deviate from the correct solution.

A. Free Space

Substituting a solution of the form

e(t , z) = ei(kz−ωt)

into Eq. (2.6), we obtain the dispersion relation of the continuous model in free space given by

kV
EX(ω) = ω

c
,

where kV
EX denotes the wavenumber in free space (where V in the superscript denotes “vacuum”)

for the exact equations (EX in the subscript denotes “exact”). To determine the dispersion relation
for the discretized model using the finite element method FEM-V, we substitute

Xn
j =

[
en

j

dn
j

]
=

[
ẽ

d̃

]
ei(k�j�z−ωn�t),

where k� is the numerical wave number, into the discrete Eq. (3.8) with M̄ = M̄V, K̄ = K̄V and
J̄ = J̄ V as given in (3.11) (with B ≡ 0 and J ≡ 0). Using the identities (4.1), (4.2) as well as the
following two trigonometric identities

e−iω�t/2 + eiω�t/2 = 2 cos(ω�t/2), (5.1a)

e−iω�t/2 − eiω�t/2 = −2i sin(ω�t/2). (5.1b)

We obtain a homogeneous system of the type AX̃ = 0. We then set det(A) = 0 to determine
a relation between k� and ω, which is the numerical dispersion relation for the finite element
scheme in free space, FEM-V. This relation is

sin2 (k��z/2) =
(

2

3
+ ν2 cos2 (ω�t/2)

sin2 (ω�t/2)

)−1

. (5.2)

Solving for k� in the above we obtain

k� = kV
FE(ω) = 2

�z
sin−1

((
2

3
+ ν2 cos2 (ω�t/2)

sin2 (ω�t/2)

)−1/2
)

. (5.3)

The dispersion relation for the FDTD scheme [39] is given to be

sin(k��z/2) = sin(ω�t/2)

ν
, (5.4)
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FIG. 6. Plot of the phase error � versus ω�t for FEM-V with ν ∈ {0.6,
√

1/2, 1, 4} (left), and FDTD in
freespace with ν = {0.6,

√
1/2,

√
2/3, 1} (right). For ν = 1 FDTD has zero dispersion.

which implies that

k� = kV
FD(ω) = 2

�z
sin−1

[
sin (ω�t/2)

ν

]
. (5.5)

We will define the phase error for a given method as

�(ω�t) =
∣∣∣∣kEX(ω�t) − k�(ω�t)

kEX(ω�t)

∣∣∣∣ , (5.6)

where for FEM-V we have k� = kV
FE as defined in (5.3), and for the FDTD scheme we have

k� = kV
FD as defined in (5.5).

In Fig. 6 we plot the phase error in a vacuum for the FEM-V scheme with the theta method using
ν ∈ {0.6,

√
1/2, 1, 4} (left) and for the FDTD scheme using ν ∈ {0.6,

√
1/2,

√
2/3, 1} (right). We

note that for the finite element method, no significant differences were noticed for ν values larger
than 4. Thus, in this article we limit ourselves to ν ∈ (0, 4] (see [36]).

To see why ν = √
1/2 has the least dispersion for FEM-V and why ν = 1 has the least

dispersion for the FDTD scheme, it is helpful to plot the relations in Eqs. (5.2) and (5.4) versus
the continuous model values. We define

γ 2
EX := sin2

(
kV

EX�z

2

)
= sin2

(
ω�t

2ν

)

where we have substituted νkV
EX�z = ω�t . We similarly define γ 2

FE = sin2(kV
FE�z/2) and

γ 2
FD = sin2(kV

FD�z/2) using the definitions in (5.3) and (5.5), respectively. Figure 7 displays
plots for each of these γ 2(ω�t) functions for various values of ν. For the continuous model
(left plot), ν has the effect of moving the location of the maximum value, γ 2 = 1. For the finite
difference case (right plot) the location of the maximum does not change, although the value of
the maximum does. For ν = 1 the curve coincides exactly with the continuous case. For the finite
element method (middle plot) the location of the maximum does not change, nor does the value.
However, as this value is fixed at 1.5, it will never coincide exactly with the continuous case for
any value of ν.
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FIG. 7. Plot of the γ 2 versus ω�t for the continuous model, the finite elment scheme, and the finite
difference scheme (left to right).

To determine the best value of ν for the finite element method, we first note that γ 2
EX can be

expanded as

1

4ν2
(ω�t)2 − 1

48ν4
(ω�t)4 + 1

1440ν6
(ω�t)6 + O((ω�t)8).

As both the expansions of γFD and γFE match up to the second order coefficient, it is the Taylor
coefficient of (ω�t)4, i.e.,

cEX
4 = − 1

48ν4
,

that determines how well the discretization method matches the continuous model. For the finite
difference method we have

cFD
4 = − 1

48ν−2
,
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whereas for the finite element method we have

cFE
4 = −1 + ν2

24ν4
.

For ν = 1, cFD
4 = cEX

4 = −1/48, but cFE
4 = 0. If we solve (cEX

4 − cFE
4 )(ν) = 0 we find that

ν = √
1/2 is the value for which the finite element method most closely matches the continuous

model wave number. It can be shown that for ν = √
2/3 the FEM-V scheme and the FDTD

scheme have almost identical dispersion curves. Further, for ν = √
1/2, FEM-V has phase veloc-

ity (propagation speed scaled by 1
c ) closest to one (see [36]). For ν = 1 FDTD always has phase

velocity equal to one.

B. Debye Media

The dispersion relation for the continuous Debye model (with ε∞ = 1) is given by

kD
EX(ω) = ω

c

√
εD

r (ω), (5.7)

where

εD
r (ω) := εsλ − iω

λ − iω
, (5.8)

is the relative complex permittivity of the Debye medium, and λ = 1/τ .
We will show below that the numerical dispersion relations for the finite element method as

well as the FDTD method can be written in the form

kD
�(ω) = 2

�z
sin−1

[
ω�

c

�z

2

√
εD

r ,�

]
, (5.9)

with the discrete relative complex permittivity given in the form

εD
r ,� := εs,�λ� − iω�

λ� − iω�

. (5.10)

To derive the numerical dispersion relation for the finite element method FEM-D1, described
in “Debye Media” section, we substitute

Xn
j =


 en

j

pn
j

dn
j


 =


 ẽ

p̃

d̃


 ei(k�j�z−ωn�t)

in the discrete Eq. (3.8) with M̄ = M̄D, K̄ = K̄D and J̄ = J̄ D as given in (3.13)-(3.14) (with
B ≡ 0, J ≡ 0). We assume again that ε∞ = 1. As in the case of free space, we obtain a homo-
geneous system of the type AX̃ = 0. We then set det(A) = 0 to obtain a relation between the
numerical wavenumber k� and the frequency ω. Solving for k� in this relation we obtain the
numerical dispersion relation for the FEM-D1 scheme in the form (5.9) with kD

�(ω) = kD
FE(ω),
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the discrete relative complex permittivity in (5.10) with εD
r ,� = εD

r ,FE and the discrete medium
parameters given by

εs,� = εD
s,FE := εs

α2β2
, (5.11)

λ� = λD
FE := λ cos(ω�t/2)β2α3, (5.12)

ω� = ωD
FE := ωsωα, (5.13)

where in the above we have used the following simplifying variables:

sω = sin(ω�t/2)

ω�t/2
, (5.14)

α =
(

2 sin2(ω�t/2)

3ν2
+ cos2(ω�t/2)

)−1/2

, (5.15)

β =
(

2εs sin2(ω�t/2)

3ν2
+ cos2(ω�t/2)

)1/2

. (5.16)

To determine the numerical dispersion relation for the finite element scheme FEM-D2,
described in “Debye Media” section, we substitute (5.2) in the discrete Eq. (3.16). Following the
procedure discussed above we obtain the numerical dispersion relation for the FEM-D2 scheme
to be

sin2(kD
FE2�z/2) = α2

(
2 sin(η)i − λ cos(η)εs�t + 1

4h
3
τ cos(η)εd

2 sin(η)i − λ cos(η)εs�tβ2α2 + 1
6h

3
τ cos(η)εdα2

)
, (5.17)

where η = ω�t

2 , εd = εs −1, and hτ = �t/τ . If we neglect terms in h3
τ , then the expression (5.17)

reduces to (5.8)–(5.9), with the medium parameters as defined earlier. Thus, for small hτ , both
the finite element methods, FEM-D1 and FEM-D2 have the same numerical dispersion relations.
From the section on stability analysis we have seen that for low dissipation hτ needs to be about
0.001 for Debye media and 0.01 for Lorentz media. For these values of hτ both finite element
schemes produce the same dispersion graphs (see [36]). Therefore, in the rest of this section we
will consider only FEM-D1, and may refer to it as the finite element scheme for the Debye model.
Similarly, it was shown in [7] that the phase error properties for the two FDTD methods JHT-D
[12] and KF-D [13] are identical. Therefore, in the remainder of this section we will consider only
JHT-D, and may refer to it as the finite difference scheme for the Debye model. We will compare
dispersion properties of the finite element scheme FEM-D1 with those of the finite difference
scheme JHT-D.

The FEM-D1 scheme misrepresents the continuous model parameters λ and εs discretely as
λD

FE and εD
s,FE, and misrepresents the frequency ω as ωD

FE. We note that as ν increases (ν >
√

εs),the
product αβ → 1 thus εD

s,FE → εs . The discrete parameter λD
FE is a function of the continuous model

parameter εs via the quantity β. However, for the regime of interest, namely ω�t small, when ν

is large (ν >
√

εs), the quantity 2εs sin2(ω�t/2)/3ν2 is dominated by cos2(ω�t/2). Also note
that the product αβ → 1 as α → 1/ cos(ω�/2) and thus λ� → λ. Finally for ω�t small and ν

large, sωα ≈ 1 and thus ωD
FE → ω. Hence, the choice of the Courant number ν is important for

maintaining low dispersion error in the FEM schemes.
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We compare the FEM-D1 scheme for Debye media with the finite difference scheme JHT-D
presented in [12] and analyzed in [7]. The numerical dispersion relation for this finite differ-
ence scheme can be written in the form of (5.9)–(5.10) where the discrete representations of the
continuous model parameters are given as

εs,� = εD
s,FD := εs (5.18)

λ� = λD
FD := λ cos(ω�t/2), (5.19)

and the discrete representation of the frequency is

ω� = ωD
FD := ωsω.

We compare the phase error for the FEM-D1 to phase error for the JHT-D scheme. The phase
error is plotted against values of ω�t in the range [0, π]. We note that ω�t = 2π/Nppp, where
Nppp is the number of points per period and is related to the number of points per wavelength Nppw

via

Nppw = νNppp. (5.20)

Thus, for ν ≤ 1, the number of points per wavelength is always less than or equal to the number
of points per period, and conversely for ν > 1. Note that the number of points per wavelength in
the range [π/4, π ] is 8 to 2 points per period. We are more interested in the range [0, π/4], which
involves more than 8 points per period (or equivalently more than 8 points per wavelength).

To generate the plots below we have used the values given in (4.16), namely: ε∞ = 1, εs = 78.2,
and τ = 8.1 × 10−12. Figure 8 plots the phase error � versus ω�t for the FEM-D1 scheme (left),
and the log of the phase error versus ω (right), using hτ = 0.001 and various values of ν. In
Fig. 8 (right) we can see that in the finite element scheme, for a fixed frequency, the phase error
reduces as ν increases, even beyond ν = 1. We note that there is little difference for ν values
larger than 4, thus we can restrict ourselves to ν ∈ (0, 4] in considering the best choices of ν

to minimize dispersion. Figure 9 depicts the corresponding plots for the JHT-D method (recall
JHT-D is conditionally stable for ν ≤ 1). We note that ω�t = π corresponds to Nppw = 2 in the
case of ν = 1, thus, this case in the left plot of Fig. 9 suggests that the JHT-D scheme has low
dispersion even when the wavelength is very poorly resolved. However, the right plots of Figs. 8
and 9 show that FEM-D1 with large ν is superior in the frequency range near 1/τ .

The report [36] contains plots of the real and imaginary parts of the relative complex permit-
tivity for Debye media corresponding to the continuous equations (exact values), the FEM-D1
scheme with ν ∈ {√1/2, 1, 4}, hτ ∈ {0.1, 0.01}, and finally the JHT-D scheme with ν ∈ 1 fixed
and hτ ∈ {0.1, 0.01}. Figure 10 depicts a representative example. For hτ = 0.1, as ν is increased
the discrete permittivities of the finite element scheme approach the exact values. For hτ = 0.01,
the agreement of the discrete permittivities with the exact values is better than with hτ = 0.1,
for each value of ν. For ν = 4 we see the best agreement of the discrete real and imaginary
permittivities with the exact values. For ν = 4 we also see the best agreement of the discrete
values of the parameters λ and εs with the exact values (see plots in [36]). However, the discrete
value of the frequency ω for the FEM-D1, as shown in Fig. 11, appears to have a better agreement
with the exact value when ν = 1, even better than the finite difference scheme.

The discrete parameters in the FEM-D1 scheme have better agreement with the exact values
as ν increases and hτ decreases. For the JHT-D scheme, the discrete parameters do not depend on
the value of ν. Still, as hτ is decreased they do converge toward the exact values.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ANALYSIS OF STABILITY AND DISPERSION 23

FIG. 8. Plot on left (right) is of the phase error � (resp., log of �) versus ω�t (resp., ω) for the FEM-D1
scheme with ν ∈ {√1/2, 1, 4, 16} using hτ = 0.001.

For the particular values tested there, it appears that the value of ν that correctly represents λ

will sufficiently model the entire complex permittivity for many frequencies. Thus our guideline
for Debye media is to choose this value of the Courant number ν.

C. Lorentz Media

The dispersion relation for the continuous Lorentz model (with ε∞ = 1) is given by

kL
EX(ω) = ω

c

√
εL

r (ω), (5.21)

where the relative complex permittivity for Lorentz media is given to be

εL
r (ω) := ω2 − εsω

2
0 + iλω

ω2 − ω2
0 + iλω

. (5.22)

FIG. 9. Plot on left (right) is of the phase error � (resp., log of �) versus ω�t (resp., ω) for the JHT-D
scheme with ν ∈ {1,

√
2/3,

√
1/2, .6} using hτ = 0.001.
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FIG. 10. Plots of the real and imaginary parts of the relative complex permittivity for Debye media cor-
responding to the continuous equations, the FEM-D1 scheme with ν = 4, hτ = 0.1 and the JHT-D scheme
with ν = 1, hτ = 0.1.

As done for the Debye case, we will show below that the numerical dispersion relations for
the finite element method as well as the FDTD method applied to Lorentz media can be written
in the form

kL
�(ω) = 2

�z
sin−1

[
ω�

c

�z

2

√
εL

r ,�

]
, (5.23)

where the discrete relative complex permittivity is given to be

εL
r ,� := ω2

� − εs,�ω2
0,� + iλ�ω�

ω2
� − ω2

0,� + iλ�ω�

. (5.24)

To determine the numerical dispersion relation for the finite element method applied to a
Lorentz medium (FEM-L) described in “Lorentz Media (FEM-L)” section, we substitute

Xn
j =




en
j

pn
j

dn
j

qn
j


 =




ẽ

p̃

d̃

q̃


 ei(k�j�z−ωn�t)

into the discrete Eq. (3.8) with M̄ = M̄L, K̄ = K̄L and J̄ = J̄ L as given in (3.19)–(3.20) (with
B ≡ 0, J ≡ 0).

As before we obtain a homogeneous system of the type AX̃ = 0. We then set det(A) = 0 to
obtain a relation between the numerical wavenumber k� and the frequency ω. Solving for k� in
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FIG. 11. Plots of the ratio of the discrete frequency ω� for Debye media and the exact frequency ω, cor-
responding to the continuous equations, the FEM-D1 scheme and the JHT-D scheme (using ν = 1) with
hτ = 0.1 (left) and hτ = 0.01 (right). Note: in the right plot, the curve corresponding to FEM-D1 with ν = 1
coincides with the exact curve to graphical resolution.

this relation, we have that the numerical dispersion relation for the FEM-L scheme is given by
(5.23) with kL

� = kL
FE the discrete relative complex permittivity given by (5.22) with εL

r ,� = εL
r ,FE,

and the discrete medium parameters given by

εs,� = εL
s,FE := εs

α2β2
(5.25)
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λ� = λL
FE := λ cos(ω�t/2)α (5.26)

ω0,� = ωL
0,FE := ω0 cos(ω�t/2)βα2 (5.27)

ω� = ωL
FE := ωsωα, (5.28)

where sω, α, β are as defined in Eqs. (5.14)–(5.16). Thus, the FEM-L scheme misrepresents εs ,
λ, ω0, and ω as εL

s,FE, λL
FE, ωL

0,FE, and ωL
FE respectively. In particular, note that for the finite element

method applied to the Lorentz model, λL
FE does not depend on the continuous model parameter εs ,

however, ωL
0,FE does. In the FEM-D1 scheme for the Debye model, λD

FE depended on β2, whereas in
the FEM-L scheme for the Lorentz model, ωL

0,FE depends directly on β. The square of the discrete
parameter ω0,� = ωL

0,FE appears in the dispersion relation (5.23)–(5.24), so the contribution from
β is again raised to the second power. This coupled with the fact that in the regime of interest
ω�t is small, implies that as before the effect of εs on the dispersion is likely to be small.

We compare the FEM-L scheme with two different finite difference schemes which have been
analyzed in [7]. For the JHT-L scheme in [12] the numerical dispersion relation can be written in
the form of (5.23)–(5.24) where the discrete representations of the continuous model parameters
and the frequency are given as

εs,� = εL
s,JHT := εs (5.29)

λ� = λL
JHT := λ

s̃ω

sω

(5.30)

ω0,� = ωL
0,JHT := ω0

√
cos(ω�t) (5.31)

ω� = ωL
JHT := ωsω, (5.32)

with s̃ω = sin(ω�t)

ω�t
.

The second finite difference scheme, the KF-L scheme of [14], has a numerical dispersion rela-
tion in the form of (5.23)–(5.24) given by the following discrete representations of the continuous
model parameters and the frequency

εs,� = εL
s,KF := εs (5.33)

λ� = λL
KF := λ cos(ω�t/2) (5.34)

ω0,� = ωL
0,KF := ω0 cos(ω�t/2) (5.35)

ω� = ωL
KF := ωsω. (5.36)

We plot the phase error � as defined in (5.6) for the FEM-L method and we compare it with
the phase errors for the JHT-L and the KF-L finite difference schemes. The phase error is plotted
against values of ω�t in the range [0, π ]. We note that, as before, ω�t = 2π/Nppp where again
Nppp is the number of points per period and is related to the number of points per wavelength Nppw

via (5.20).
To generate the plots below we have used the values for the medium parameters as given in

(4.23). Figure 12 plots the phase error � versus ω for the FEM-L scheme, with various values
of ν and using h0 = 0.01. In this figure, note that the dispersion for the finite element method
reduces as ν goes to 1 for all values of h0. Figure 13 plots the phase error � versus ω for the
KF-L scheme, with various values of ν and using h0 = 0.01. We see that for low frequencies, the
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FIG. 12. Plot of the phase error � versus ω for the FEM-L scheme with ν ∈ {√1/2, 1, 4, 16} using
h0 = 0.01. (Right plot is zoom of left.)

FEM-L scheme has less dispersion by an order of magnitude than the KF-L scheme. Plots of the
JHT-L scheme show that it is even worse (see [36]).

The report [36] also contains plots of the real and imaginary parts of the relative complex per-
mittivity for Lorentz media corresponding to the continuous equations (exact values), the FEM-L
scheme with ν ∈ {√1/2, 1, 4, 16}, h0 ∈ {0.1, 0.01}, and finally the KF-L scheme with ν = 1 fixed
and h0 ∈ {0.1, 0.01} (plots of JHT-L were similar and were thus omitted). See Figure 14 for a
representative example in the case of ν = 1, h0 = 0.1. For h0 = 0.1, as ν is increased, the discrete
permittivities of the FEM-L scheme approach those of the KF-L method. However, for ν = 1 it
appears that the finite element approximation is noticeably better. For h0 = 0.01, the agreement
of the discrete permittivities with the exact values is better than with h0 = 0.1, for each value of
ν. For ν = 1 we see the best agreement of the discrete real and imaginary permittivities with the
exact values, regardless of h0. This is not seen in the plots of the discrete values of the parameters
λ, εs and ω0 (for example, see Fig. 15 for ω0 and [36] for other plots). The discrete parameters in
the FEM-L scheme have better agreement with the exact values as ν is increased, even beyond

FIG. 13. Plot of the phase error � versus ω for the KF-L scheme with ν ∈ {0.6,
√

1/2,
√

2/3, 1} using
h0 = 0.01. (Right plot is zoom of left.)
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FIG. 14. Plots of the real and imaginary parts of the relative complex permittivity for Lorentz media corre-
sponding to the continuous equations, the FEM-L scheme with ν = 1, h0 = 0.1 and the KF-L scheme with
ν = 1, h0 = 0.1.

1. However the discrete value of the frequency ω appears to have a better agreement with the
exact value when ν = 1 (the plot is similar to that of Fig. 11 for the Debye case, and therefore is
omitted).

As the discrete complex permittivity matches the exact more closely when ν = 1, we con-
clude that for the Lorentz model, the value of ν that correctly represents ω will sufficiently model
the complex permittivity and this is our guideline for Lorentz media. For the finite difference
schemes, the discrete parameters do not depend on the value of ν. However, as with the finite
element method FEM-L, if h0 is decreased all discrete parameters agree better with the exact
values. It should be noted that for the FEM-L scheme, as ν increases, the discrete parameters
actually converge toward the KF-L values for fixed hτ . Thus, if hτ is too large for the KF-L values
to have converged, the FEM-L scheme may actually have better agreement with the continuous
values. This is precisely what is occurring in Fig. 14.

VI. NUMERICAL SIMULATIONS

To further compare and verify the observations drawn from the stability and dispersion analyses in
the previous sections, we examine simulations of a sample problem using the Lorentz polarization
model (the Debye model problem is verified in [36]). In our simulations, we successively reduce
the value of hτ , and hence the time step, holding all other parameters fixed, until convergence is
achieved.

For interrogation of a Lorentz medium, we simulate the propagation of 12 cycles of a truncated
sine wave with carrier frequency at 1.5 PHz (1.5 × 1015 Hz), which is normally incident on the
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FIG. 15. Plots of the resonant frequency ω0 for Lorentz media corresponding to the continuous equations,
the FEM-L scheme and the KF-L scheme (using ν = 1) with h0 = 0.1 (left) and h0 = 0.01 (right).

medium from a vacuum. The medium is defined by the parameters given in (4.23). We performed
simulations with the finite element scheme, FEM-L, using ν = 1.

A time trace of the electric field at a depth of 0.01 mm into the Lorentz medium was recorded.
The left plot of Fig. 16 displays a close view of the central portion of the signal and demonstrates
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that true convergence has not been reached. The right plot of Fig. 16 displays a magnification of
one of the peaks from the central portion of the signal computed with smaller h0 values. From this
plot we can see that at most h0 = 0.02 (i.e., at least 50 points per ω0) is necessary for convergence
on this small scale. The required value of h0 < 0.02 is in line with the suggested range of O(10−2).

FIG. 16. Views of the center of the time trace of the electric field at a depth of 0.01 mm into a Lorentz
medium (frequency is 1.5 PHz), for increasingly smaller values of h0. (Right plot, using smaller values of
h0, is at a finer scale than the left plot.) Convergence is achieved at h0 = 0.02.
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VII. CONCLUSIONS

In this article, we have provided a stability and dispersion analysis and representative simula-
tions of finite element schemes for modeling dispersive wave propagation in complex dielectric
media. We considered materials described by Debye and Lorentz polarization models, but the
numerical approach is sufficiently general to allow for any model with an ODE representa-
tion. We have contrasted our analyses with those corresponding to the finite difference schemes.
From the stability and dispersion analysis as well as the simulations shown in the paper, we
can conclude that the artificial dissipation in the FEM schemes presented here for Debye and
Lorentz media are strongly dependent on the quantity hτ = �t/τ when τ is the smallest
time scale. For Lorentz media, in addition, the quantity h0 = �t/T0 may be the dominant
quantity if T0 = 2π/ω0 is smaller than τ . We see that hτ or h0 have to be sufficiently small
in order to accurately model the propagation of pulses at large distances inside the disper-
sive dielectric medium. For Debye media hτ is recommended to be at least 100 points per τ ,
preferably hτ = O(10−3). For Lorentz media we recommend either h0 or hτ to be O(10−2) to
minimize dissipation. These results are exactly the same guidelines for FDTD schemes posed
in [7].

From the dispersion analysis for the finite element schemes we see that the value of the Courant
number ν to be preferred is the one that provides the best agreement of the discrete relative com-
plex permittivity with the exact permittivity, i.e., the value that results in the least phase error for
the regime of interest. The unconditional stability of the FEM scheme allows the user to have
some freedom in the choice of ν. For the Debye model, the value of ν that results in the best
discrete representation of λ = 1/τ should sufficiently approximate the complex permittivity. For
the Lorentz model, the value of ν that correctly represents the angular frequency ω should be
chosen. For the FDTD scheme, however, conditional stability restricts the choice of ν = 1 to
minimize dispersion.

It is not straight-forward to say which of the methods has the best accuracy overall, as the
distinction is heavily case dependent. However, for the particular case of relatively low frequency
(as compared to other scales in the problem), and sufficiently fine mesh parameters, the analy-
sis here has shown that the FEM schemes considered will have less dispersion than the FDTD
methods for both Debye and Lorentz problems. Still, this does not take into account the increased
computational cost of the FEM. The report [36] compares the stability and phase errors of the
FEM schemes and the FDTD schemes for values of hτ (and h0) which result in comparable
computational run times. In both the Debye and Lorentz cases, the stability results and phase
errors for the FEM schemes considered are all on the same order of magnitude as in the FDTD
methods.

Finally, finite element approaches allow the use of general meshes that can be used to avoid
the stair stepping inaccuracies of the FDTD method in the modeling of complicated geometries.
This along with unconditional stability and equivalent accuracy (to FDTD) makes the FEM a very
attractive method for modeling dispersive wave phenomenon.
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