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Abstract
The Cole-Cole model is known to accurately de-

scribe the dielectric response of a dispersive material
over a wide range of frequencies. The model, how-
ever, does not lend itself easily to fast, efficient time
domain simulation methods such as the Finite Dif-
ference Time Domain (FDTD) method. Instead the
physics-based Debye model (of which the Cole-Cole
model is a non-physical, heuristic generalization) is
often used. However, simulations do not match data
over any broad range of frequencies. In this work,
we seek to avoid the difficulty of implementing the
Cole-Cole model by presenting an approximation of
dispersive mechanisms using distributions of param-
eters within the Debye model. Thus, parameter es-
timation becomes an inverse problem for the distri-
bution of dielectric parameters. We formulate and
solve this inverse problem in the case of time-domain
electric field data. The forward problem requires a
fast FDTD implementation capable of incorporating
distributions of parameters.

Introduction
A fundamental question in electromagnetics is how

to model dispersion and dissipation of the fields in
complex materials such as biological tissue. This has
most often led to the use of Maxwell’s equations cou-
pled with constitutive relationships for polarization.
The problem is even more difficult with noisy data
or variability (heterogeneity) in the material being
interrogated. Some deterministic models have been
generalized to an extent that they seem to account
for this variability, but there is some question as to
whether the resulting models are even physically re-
alistic.

A recently rediscovered modeling framework allows
uncertainty at the molecular level through distribu-
tions of parameters representing molecular variabil-
ity. Intensive experimental efforts have been pur-
sued in describing data for complex materials in
the frequency domain with distributions of dielec-
tric parameters, especially relaxation times in mul-
tiple Debye models. A significant amount of this
work is reviewed in the survey paper by Foster and

Schwan[5]. The corresponding time-domain inverse
problems were initially developed in [1] and exam-
ples for a one dimensional case were solved in [2]
using finite elements for the forward simulation and
quadrature for computing the expected value over a
distribution. Our contribution here is to implement
a fast forward solver utilizing the generalized Polyno-
mial Chaos framework. This allows use of the finite
difference time domain (FDTD) method for solving
the dispersive Maxwell’s Equations and eliminates
the need for a separate computation of expected val-
ues.

Maxwell’s equations may be coupled with consti-
tutive laws to include effects from polarization

D = εE + P, (1)

where ε = ε0ε∞. In (1), D and E represent the elec-
tric flux density and the electric field, respectively;
P is the polarization, ε0, the electric permittivity of
free space; ε∞, the electric permittivity in the limit
of infinite frequencies. The polarization, written in
the convolution form, is

P(t,x) =
∫ t

0
g(t− s,x; ν)E(s,x)ds, (2)

where g(t,x) is the dielectric response function
(DRF) and ν is a set of dielectric parameters. The
DRF for a Debye Medium is

g(t,x) =
ε0(εs − ε∞)

τ
e−t/τ , (3)

with ν = {εs, ε∞, τ}. Here ε∞ represents the electric
permittivity in the limit of static frequency, and τ is
called the relaxation time. The polarization in (2)
defined by (3) can be shown to be equivalent to the
solution of the ordinary differential equation,

τṖ + P = ε0εdE, (4)

where εd = εs − ε∞.
It is common to assume multiple poles of Debye-

type polarization corresponding to multiple mecha-
nisms. Converting to the frequency domain,

D̂ = ε(ω)Ê (5)



the complex permittivity for the multi-pole Debye
model is given by

ε(ω)D = ε∞ +
n∑

m=1

∆εm

1 + (iωτm)
+

σ

iωε0
, (6)

where each τm represents one of the relaxation time
parameters, ∆εm = εsm−εsm−1 (except for ∆ε1, since
∆ε1 = εs1 − ε∞), and n is the number of poles. The
conductivity, σ, is assumed to be given by Ohms law.
A best fit of Debye model parameters [3] to permit-
tivity data for dry skin is depicted in Figure 1 (see
[3] for the imaginary part).
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Figure 1: Real part of ε(ω), ε, or the permittivity.

A better fit to data can be achieved by the Cole-
Cole model, a heuristic generalization of Debye

ε(ω)CC = ε∞ +
n∑

m=1

∆εm

1 + (iωτm)(1−αm)
+

σ

iωε0
, (7)

where αm are non-physical parameters. The fit to
dry skin data for the Cole-Cole model is also de-
picted in Figure 1. The Cole-Cole model does not
correspond to a simple ODE in the time-domain, but
rather a fractional order differential equation. There-
fore parameters determined for this model are not
easily used in a forward simulation. Existing options
involve discretizing the inverse Laplace transform re-
sulting in methods equivalent to using a multi-pole
Debye model for a single dispersive mechanism.

Methods
Distributions

To allow for a distribution F of parameters ν over
some admissible setN , we generalize the polarization

law (2) to

P(t,x;F ) =
∫ t

0

∫
N

g(t−s,x; ν)E(s,x)dF (ν)ds. (8)

where F is chosen from the space F = P(N ) of all
probability measures F on N .

In [3], the inverse problem to determine the distri-
bution of parameters which minimizes some measure
of error with complex permittivity data was inves-
tigated. In a multi-pole model, each mechanism is
modeled by a distribution of parameters, thus requir-
ing discrete combinations of continuous distributions.
For example, the best fit to dry skin data using two
uniform distribution of dielectric parameters in the
multi-pole Debye model is depicted in Figure 1 (la-
beled Debye Distribution).

Forward Problem
We define the random polarization P(x, t; τ) to be

the solution to

τ Ṗ + P = ε0εdE (9)

where τ is a random variable with PDF f(τ) =
dF (τ), for example, f(τ) = (τb − τa)−1 for a uni-
form distribution. The electric field depends on the
macroscopic polarization, defined in (8), which can
be shown to be equivalent to the expected value of
the random polarization

P(x, t;F ) =
∫ τb

τa

P(x, t; τ)f(τ)dτ.

Existence and uniqueness of solutions to weak for-
mulation of the 1D forward problem, as well as con-
tinuous dependence of (E, Ė) on F in the Prohorov
metric shown in [1].

Inverse Problem for Distributions
Given data {Ê}j we seek to determine a probabil-

ity measure F ∗, such that

F ∗ = min
F∈P(Q)

J (F ),

where, for example,

J (F ) =
∑

j

(
E(tj ;F )− Êj

)2
.

Continuity of F → (E, Ė) implies continuity of
F → J (F ), for a continuous objective function J .
Compactness of Q implies compactness of P(Q) with
respect to the Prohorov metric. Therefore, a mini-
mum of J (F ) over P(Q) exists [1].



Approximating the Random Polarization
We apply the generalized Polynomial Chaos ap-

proach to our random polarization model in order
to separate the time dependence from the random-
ness [6]. We then truncate the expansion in random
space resulting in a deterministic, linear system of
ordinary differential equations (coupled to Maxwell’s
Equations) for an approximation to the random po-
larization. Specifically, in one spatial dimension z,
we assume an expansion (at each point in space) in
terms of othogonal polynomials {φj} given by

P(t; τ) =
∞∑

j=0

αj(t)φj(ξ),

with τ = τ(ξ) = rξ+m, e.g., ξ ∼ Beta(a, b). Project-
ing into a finite dimensional subspace, (9) becomes

(rM + mI)~̇α + ~α = ε0εdE ~e1 =: ~g

or
A~̇α + ~α = ~g.

Maxwell’s Equations depend on the macroscopic po-
larization, the expected value of the random polar-
ization at each point (z, t), which is simply

P (z, t;F ) = α0(z, t).

and therefore there is no need to include randomness
in Maxwell’s Equations. In the above,

M =


b0 a1

c0 b1 a2

. . . . . . . . .
. . . . . . ap

cp−1 bp

 ,

where the diagonals come from the coefficients of the
triple recursion formula for the choice of family of
standard orthogonal polynomials

ξφj = ajφj−1 + bjφj + cjφj+1

(with the assumption that φ−1 = 0). See [4] for the
details of the derivation.

Numerical Simulation of Foward Problem
To solve the inverse problem for the distribution

of relaxation times, we need a method of accurately
and efficiently simulating P (z, t;F ) that is compati-
ble with FDTD for Maxwell’s Equations. Applying

the central difference approximation, based on the
Yee scheme, Maxwell’s equations with conductivity
and polarization included,

ε
∂E

∂t
= −∂H

∂z
− σE − ∂P

∂t

and
µ

∂H

∂t
= −∂E

∂z

become

ε
E

n+ 1
2

k − E
n− 1

2
k

∆t
=−

Hn
k+ 1

2

−Hn
k− 1

2

∆z
− σ

E
n+ 1

2
k + E

n− 1
2

k

2

−
P

n+ 1
2

k − P
n− 1

2
k

∆t

and

µ
Hn+1

k+ 1
2

−Hn
k+ 1

2

∆t
= −

E
n+ 1

2
k+1 − E

n+ 1
2

k

∆z
.

Note that while the electric field and magnetic field
are staggered in time, the polarization updates si-
multaneously with the electric field.

Applying second order central differences to ~α =
~α(zk) gives

A
~αn+ 1

2 − ~αn− 1
2

∆t
+

~αn+ 1
2 + ~αn− 1

2

2
=

~gn+ 1
2 + ~gn− 1

2

2
.

Combining like terms gives

(2A + ∆tI)~αn+ 1
2 = (2A−∆tI)~αn− 1

2

+ ∆t
(
~gn+ 1

2 + ~gn− 1
2

)
.

Note that (2A + ∆tI) is tridiagonal and small (e.g.,
8 × 8). The numerical stability of this method for
CFL number ν ≤ 1 is established in [4] for the Beta
distributions with Jacobi polynomials.

This approach gives a simple and efficient method
to simulate systems involving distributions of param-
eters, and works equally well in three spatial dimen-
sions. One limitation is that the choice of polynomi-
als depends on type of distribution assumed for the
parameters. However, this choice only affects the def-
inition of the matrix M . Also, one needs appropriate
error estimates to be sure that a sufficient number of
polynomials is used in the expansion. However, as
the matrix does not change over time steps, the com-
plexity of solving for the random polarization scales
linearly with the number of terms in the expansion,
while the error decays exponentially [4].



Inverse Problem Numerical Results

In Figure 2 we show a plot of time domain elec-
tric field data with 20% random noise added. This
data was simulated using the Beta distribution of re-
laxation times depicted in Figure 3. Note that the
shape of Beta distribution can mimic a log-normal,
but with finite support, thus is it especially appropri-
ate for use in multi-pole models. Given the data, a
nonlinear least squares inverse problem for the shape
parameters of the Beta distribution was solved using
as an initial guess the distribution also depicted in
Figure 3. It is clear that the forward simulation cor-
responding to this initial distribution is significantly
different from the data, as shown in Figure 2. The
optimal distribution found is indistinguishable from
the actual (see Figure 3); likewise the corresponding
forward simulation matches a simulation performed
using the actual distribution (see Figure 2).
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Figure 2: Comparison of simulations to data.

Conclusion

Previous work showed that estimation approach
for distributions worked well given time domain elec-
tric field data [2]. We have improved on the accuracy
and speed of the forward simulations [6], [4]. We are
now able to efficiently determine the shape of the
Beta distributions with confidence in spite of noise.
Similar results have been obtained with very broad
bandwith signal and with combining multiple polar-
ization mechinisms.
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Figure 3: Comparing initial to final distribution.
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