3

COMPUTING WITH TILES

Marsha Michie
Agnes Scott College

REU Summer Research 1989

Hao Wang first introduced what later came to be known as Wang tiles.
Instead of fitting edges of tiles together by their shapes, he suggested that
one might use a simple shape (usually a square), assigning each edge a
different color. In this way one could speak of “tiling the plane,” i.e., covering
the plane without gaps or overlaps, by placing matching colored edges next
to one another.

The same problem that arises when tiling by shapes applies to tiling
with Wang tiles: Can one design an algorithm that, given a set of “pro-
totiles,” will correctly answer whether one can tile the plane with copies of
those tiles? This problem is known as the “tiling problem,” or alternately,
the “domino problem,” for obvious reasons. Branko Grunbaum and G. C.
Shepard recount some of the history of this problem:

Questions of decidability have long interested mathemati-
cians, and about twenty years ago Hao Wang began an investi-
gation into the decidability of the Tiling Problem. The following
is a simplified version of his approach. He observed that if a set
S of prototiles admits a tiling, then one of the following three
possibilities must hold:

1. S admits only periodic tilings. The simplest example of this
occurs when S consists of just one regular hexagon for this
only admits the regular (periodic) tiling.

2. S admits both periodic and non-periodic tilings. This oc-
curs, for example, if S consists of a square tile.

3. S admits only non-periodic tilings, in other words, is an
aperiodic set.
Wang then showed that the Tiling Problem is decidable if we only

consider sets S which satisfy (1) and (2). He went on to conjec-
ture (in 1961) that possibility (3) could not occur. Although,

with the advantage of hindsight, we now know this conjecture to
be false, at the time it was made it seemed quite natural — not
only were no aperiodic sets known, but no one had any idea how
such a set could be constructed.

Berger’s discovery of an aperiodic set in 1966 .. . upsets Wang’s
argument, and in fact it is now known that the Tiling Problem
is undecidable. 1]

The proof that no such algorithm can exist is dependent upon the unde-
cidability of the ‘halting problem,” and upon the universality of algorithmi-
cally undecidable problems. That is, the class of (algorithmically) undecid-
able problems is not dependent upon the language or the machine used in
attempting to solve them. Alonzo Church and Alan Turing, working inde-
pendently in the 1930’s, arrived at the conclusion that all computers and all
languages are equivalent in the class of problems that they can solve, given
ample time and memory space. We will use this idea later in reducing the
halting problem to the tiling problem.

The halting problem is this:

Can one design an algorithm (call it S) that will do the fol-
lowing;:

¢ S receives an input pair <X,z>, where X is any program (in
some specified language L) and z is any string of symbols.

o S then decides whether X, given z as an input string, will
ever halt. S answers “yes” if X halts, “no” if X will never
halt.

The answer to this question is that such an algorithm cannot be con-
structed, and the proof follows:

Suppose that such an algorithm can exist, and that we have
implemented it some language L (call this program S). Now we
can construct a new program P that will do the following:

¢ P accepts as input some program X (in the language L).

¢ Then, P makes a copy of X and activates the assumed-to-
exist program S on the pair <X,X>. (We note that since
X is a string of symbols, the pair <X,X> is a legal input to
S.)

st

e If S returns a “yes,” then P promptly enters an infinite loop.
But if S returns a “no,” then P immediately halts.

Now, we run the program P, using as input the program P
itself. P submits the pair <P,P> to S, and S returns either a
“yes” or a “no.” But which? If S reaches the conclusion that P
will halt, given P as input, P enters an infinite loop — i.e., P
doesn’t halt, given the input P. But if S decides that P will not
halt, P immediately halts. We have now designed a machine that
cannot halt, and cannot not halt, which is a logical impossibility.
So P cannot exist, and therefore, S cannot exist, either.

Note that the proof that the halting problem is undecidable is not de-
pendent upon the language of the program, or the machine upon which the
program is run. This fact enables us to choose a suitable machine to utilize
in relating the halting problem to the tiling problem, with the knowledge
that the halting problem is, in fact, undecidable for that machine. The
machine we will choose is the Turing machine, as described below:

The machine consists of a (potentially infinite) tape, divided
into squares, a reading and writing head, and a finite number of
states. Each square of the tape contains one of a finite number
of symbols (possibly a “blank”). The action of the machine is
completely determined by quintuples of the form

(gisjselaqr), (qisjskRaqr),

where qo, q1, q2. . . are the states of the machine, with go the ini-
tial state, and sq, 31, 32,. . . are the symbols, sg being the “blank”
symbol. The quintuples are interpreted thus: If the machine is
in state ¢; and reads the square containing symbol s;, it erases
3;, replaces it with the symbol sx, moves one square to the right
or left, and enters state ¢;. We will deal only with deterministic
Turing machines, meaning that for any state ¢; and symbol s; a
quintuple beginning with that state and symbol must be unique.

In order to prove that the tiling problem is undecidable, we will show
that the halting problem can be reduced to the tiling problem. To do this,
we will show a system of designing tilings that correspond to a computation
on a Turing machine. In this way, we reduce the question of whether the

machine will halt to the question of whether the set of prototiles we have
designed will “halt,” or fail to tile the entire infinite region. The Turing
machine is especially useful in this respect, in that the configuration of the
machine at any given time is completely represented by the internal state,
the configuration of the one-dimensional tape, and the position of the head
on the tape.

We will actually reduce the halting problem for Turing machines to a less
general case of the tiling problem: Can we decide (algorithmically) whether a
set T of prototiles, with a particular tile type ¢, will tile the upper half-plane,
with the restriction that the special tile type ¢t must appear somewhere on
the bottom row? The reduction we perform here is at the heart of the more
general proof, which may be found in {3]. The basic idea of the reduction is
first to encode the initial (input) tape configuration, with the special tile ¢
denoting the initial internal state and position of the machine head, on the
bottom row. Then on each successive row we encode the next configuration
of the tape, again denoting the internal state and position of the head. In
this way, continuing computation on the machine corresponds exactly to
continuing progress in the upward tiling. Clearly, then, we cannot decide
whether an arbitrary such tiling will continue upwards indefinitely, for then
we could answer the corresponding question of whether the machine will
continue or halt. The set T is designed as follows:

We will associate symbols, rather than colors, with each edge.
The top edges of the tiles in the bottom row will then encode
the input configuration of the tape. The special tile type ¢ will
encode the initial state and position, and the sides of the tiles
will force the input to appear in exactly one way. For example,
the input configuration

MEIEIDGEEIEIR

(where ‘#’ is the “blank” symbol), the initial state go, and
the initial position of the head at the first non-blank character,
could be encoded like this:

.t

35
Figure 1:
9y S5 qi, 3j
g 41.7"
35 385
Figure 2:

T must also contain tiles that pass symbols and states up
from one row to the next. Specifically, 7 must contain tiles that
deal with the following situations:

1. A symbol is not being scanned, and passes unchanged from
one configuration to the next.

2. The machine head “approaches” a symbol and in the given
row (configuration) the machine is scanning that symbol.

3. The machine has scanned a symbol and is executing a change
on both the symbol and its internal state.

Here is an easy way to design the above tiles:
1. For each symbol s;, 7 will contain the tile in Figure 1,

2. For each symbol s; and state g;, 7 will contain the two tiles
in Figure 2, and

3. For each quintuple (g;s;sxLq;), (gisjsxRqi), T contains one
of the two tiles in Figure 3.

+

Sk

q
iy 35

Sk
(]
iy S5

Figure 3:

e He| e R

e 3| | e | |
Fe| e[| ||| »

Fkl4k] o] o) o] T &
¥ ol ol | | o] &
SNE NETETS N Y

Figure 4: The main configuations of a palindrome machine with input
“abba.” The boldface symbols are the ones being scanned. After the last
configuration, the machine halts in state “YES.”

Figure 4 and Figure 5 show how the reduction from a Turing
machine to a tiling works with a simple example: the “palin-
drome” machine. If the input word is symmetric with respect to
its center (like “ababa” or “bb”) the machine halts in the “YES”
state; otherwise, it halts in the “NO” state.

This reduction is certainly useful in that it proves the undecidability of
the tiling problem (here, a special case), but what of the tiling itself? We
now have a method for producing a tiling — or a non-tiling — which can
perform any calculation that a Turing machine can perform, and therefore
can solve any effectively solvable problem. So, then, tiling may be viewed
as a valid form of computer. As it turns out, there are other methods of
computing with tiles besides the Turing machine simulation — methods
that do, indeed, produce infinite tilings, rather than halting when a result is
obtained. But computational tilings seem to divide themselves into two basic
classes: those which carry out finite computation, and those which carry out
infinite computation. The tiling of Figure 5 carries out a finite computation
But a Turing machine can carry out an infinite number of computations, if
the number of possible input configurations for that machine is infinite. So
this type of tiling really does not simulate the entire machine, but instead
corresponds to the machine’s action on some particular input. Figure 6
shows another type of tiling which performs a finite computation on the
quarter-plane. The tiling itself is, in fact, infinite, though the area in which
the computation occurs is finite for any given input. This tiling also differs
from the Turing machine simulation in that the prototiles are capable of
doing the same computation for any appropriate input, and so are capable of
an infinite number of computations. However, they can produce only one at

=

e

ol

4

V

%

1 X4

414

an

< 313

00 X o]0 XoloX {1+ X2|2
Figure 5: The tiling that corresponds to Fig. 4. (From (2})

olo

cOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO0
o T Tal T T TaL T T TP T8 T° 107
F6 2T 2 3
0 7
F3 2 2 8
0 4 7
! 3 2 2 8
0 4 7
: 3 2 2 8
0 4 7
! 342 2+3
0 4 5 5§ 5 5 7
1 L 1 1 L i 1
1 1 1 T 1 1 1
. (a)
o]+ |1
6
6 0 0
0 1 1141 IfS|t
3 2 8
3 2 i 1
0 4 1 l 1 70 l
1 2 8 1
1 2 1 8 0
4 1 4 55 57 11 l
3 1 1 1 l
3 2 1
! 4 5 7 1 1
l 1 1
0] (@ o (iv))
®)

un
Figure 6: A tiling that performs the addition of two‘equal positive integers.
From [1].

PR}

ta

a time in a given quarter-plane area. Further, by imposing the requirement
that the input must appear in a specified form (in the tiling of Figure 6,
exactly two copies of the input tile must appear) we ensure that every tiling
by the set of prototiles will produce the output tile in the correct position
on the top row.

However, neither of the previous two tilings was actually equivalent to a
general algorithm, independent of input. Is it possible to create a tiling that
will contain the corresponding output to every possible input? This tiling
would certainly carry out an infinite computation, and we clearly intend to
limit the set of prototiles to a finite number of elements. Figure 7, a simple
generalization of the addition tiling of Figure 6, indicates the Fibonacci
sequence. The top row may be viewed as the output, where for every natural
number the tile in that position indicates whether the number is a Fibonacci
number.

However, we can use the top row to represent not only the naturals,
but any countably infinite set. Possibilities include the set of strings over
some alphabet. Then we could design tilings which perform the same tasks
as finite-state automata. A finite-state machines define a language over
some alphabet by the classes of strings that it “accepts.” It is completely
represented by a state-transition diagram, made up of an initial state, a set
of final (accepting) states, other non-final states, and a transition function.
Its input is a string of symbols, to which it reacts one symbol at a time.
Beginning with the initial state, each symbol causes a transition to the next
state. At the end of the string, if the machine is in one of the final states, the
string is accepted and is therefore in the language defined by the machine.
A tiling can easily simulate the action of a deterministic finite-state machine
on a particular input string in a single finite row, using tiles of the form

o)
95 9k

, where s; is the scanned symbol at some time t, and the state-transition
diagram specifies that if the input symbol is s; and the machine is in state
gj, the next state will be gi. If we simulated the action of such a machine
on every string over a given alphabet, we could describe the machine in a
single row or half-row by stringing all the finite segments together. However,
such a tiling would not be entirely deterministic, since we need to be able
to adjoin each tile corresponding to the initial state to the end of any input
string, and we would have to make some stipulations that each input string

2

=
} —
+
2 g
iry ot
(=) -— m
< ~ [
(o)) — .
= -~ g
o i 841 m
=) ~ g
.._h9 Nioo m.
O W v v Ww w v 0 v r~ 4
o~ \”8 .a
" 3
o) <
I 2
2 8 -y
— Al =
= ~ S o
—t o i oo 3
-
O WOV v v ™~ 2
o —} o0 3
n £
p o a
t 4
oo g
—
o ™~ 3
” &0
T =
” =
]
<
OF,O O .l.
Ll ! Lol ! 2
Ltototo lolod O-ﬁOIﬁO-rO. oclotodototo- m.
sy
=y

be entirely represented at least once. However, if we consider the simple case
of a machine that acts on an alphabet of only one symbol, we can create a
half-row tiling that is completely deterministic, and completely represents
the action of the machine on every possible input string. The reason for
this is that by ordering the set of strings by size (over the alphabet a, the
set would be ordered a, aa, aaa, aaaa, ...), we can assign one tile to each
string, so that the final state of the kth string is the state following the final
state of the k + 1st string. In this way, the row can be viewed as the set
of ending states for each input strings, or as the progression of states for a
single string of infinite length.

11

Bibliography

[1]Grinbaum, Branko and Shephard, G. C. Tilings and Patterns. W. H.
Freeman and Company, N. Y., 1987.

[2 JHarel, David. Algorithmics. Addison-Wesley Publishing, 1987.

[3 JRobinson, R. M. “Undecidability and Nonperiodicity for Tilings of the
Plane,” Inventiones Mathematicae, vol.12, pp. 177-209(1971).

12

