

Małgorzata S. Peszyńska, Ralph E. Showalter

Department of Mathematics Oregon State University

Outline

- Introduction and motivation
 - Flow and transport in subsurface, nomenclature
 - Multiscale flow and transport in subsurface, experimental results
- 2 Something old: double porosity models
 - Literature review
 - Double porosity models, diffusion+advection
- Something new: building a new model
 - Ideas and steps
 - Computational experiments
 - Construct affine approximations
 - Model calculations
 - Computational experiments with elements of upscaled model

NSF 0511190 "Model adaptivity in porous media", DOE 98089 "Modeling, Analysis, and Simulation of Multiscale Preferential Flow". Also, see presentations at NSF-CMBS Nevada 5/20-25, DOE Multiscale workshop Tacoma 5/25-30 (links from my webpage)

Flow and transport in subsurface, nomenclature Multiscale flow and transport in subsurface, experimental results

Flow coupled to transport $\mathcal{F}(\Theta) = 0$ with $\Theta = (\mathbf{u}, \mathbf{p}, \mathbf{c})$

Flow

$$\mathbf{u} = -\mathbf{K} \nabla \boldsymbol{\rho}, \quad \nabla \cdot \mathbf{u} = \mathbf{0}$$

Diffusive-dispersive transport

$$\phi \frac{\partial \boldsymbol{c}}{\partial t} + \nabla \cdot (\mathbf{u}\boldsymbol{c} - \mathbf{D}(\mathbf{u})\nabla \boldsymbol{c}) = 0$$

Definitions

$$\begin{aligned} \mathbf{D}(\mathbf{u}) &:= & \text{diffusion} + \text{dispersion} \\ &:= & d_{mol}\mathbf{I} + |\mathbf{u}|(d_{long}\mathbf{E}(\mathbf{u}) + d_{transv}(\mathbf{I} - \mathbf{E}(\mathbf{u}))). \\ \mathbf{E}(\mathbf{u}) &= & \frac{1}{|\mathbf{u}|^2}u_iu_j \\ \mathbf{D}(\mathbf{u}) &\approx & d_{mol}\mathbf{I} + d_{long}|\mathbf{u}|\mathbf{E}(\mathbf{u}) \end{aligned}$$

Flow and transport in subsurface, nomenclature Multiscale flow and transport in subsurface, experimental results

Multiscale flow and transport, set-up

Model $\mathcal{F}(\Theta) = 0$ with $\Theta = (p, \mathbf{u}, c)$

$$\mathbf{u} = -\mathbf{K}\nabla p, \ \nabla \cdot \mathbf{u} = 0$$

$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{u}c - \mathbf{D}(\mathbf{u})\nabla c) = 0$$

Małgorzata S. Peszyńska, Ralph E. Showalter

Flow and transport in subsurface, nomenclature Multiscale flow and transport in subsurface, experimental results

Advection+diffusion in multiscale media: tailing

Breakthrough curves = total concentration at outlet

Flow and transport in subsurface, nomenclature Multiscale flow and transport in subsurface, experimental results

Advection+diffusion in multiscale media: tailing

Breakthrough curves = total concentration at outlet

Małgorzata S. Peszyńska, Ralph E. Showalter

Nonlocal models of transport in multiscale porous media:something old and so

Introduction and motivation

Something old: double porosity models Something new: building a new model Flow and transport in subsurface, nomenclature Multiscale flow and transport in subsurface, experimental results

Experimental visualization by Haggerty et al

Presentation at SIAM Annual 2004 by Haggerty

[ZMH+ 04] Brendan Zinn, Lucy C. Meigs, Charles F. Harvey, Roy Haggerty, Williams J. Peplinski, and Claudius Freiherr von Schwerin,

Experimental visualization of solute transport and mass transfer processes in two-dimensional conductivity fields with connected regions of

high conductivity, Environ Sci. Technol. 38 (2004), 3916-3926.

Małgorzata S. Peszyńska, Ralph E. Showalter Nonlocal models of transport in multiscale porous media:something old and so

Flow and transport in subsurface, nomenclature Multiscale flow and transport in subsurface, experimental results

Experimental breakthrough curves

Challenge in view of the experimental results

- Not-well separated scales:
 - *double porosity* diffusion model does not fit in low/intermediate contrast regime
 - $\epsilon_0 > 0$ is fixed (perhaps the homogenized model not good enough ? need a corrector ?)
 - $\frac{K_{fast}}{K_{slow}}$ small, moderate, intermediate, or large
- Evidence of advection-diffusion-dispersion in Ω_{slow} and advection-dispersion in Ω_{fast}
- Related project (Wood, Haggerty, Waymire, Thomann, Ramirez, OSU) on Taylor-Aris dispersion/skew diffusion models
- other results on tailing [HG95, HMM00, HFMM01]

Formidable challenge: find an upscaled model similar to double-porosity which can capture all of the above

< ロ > < 同 > < 回 > < 回 >

Literature review Double porosity models, diffusion+advection

Literature review Double porosity models, diffusion+advection

Brendan Zinn, Lucy C. Meigs, Charles F. Harvey, Roy Haggerty, Williams J. Peplinski, and Claudius Freiherr von Schwerin, Experimental visualization of solute transport and mass transfer processes in two-dimensional conductivity fields with connected regions of high conductivity, Environ Sci. Technol. 38 (2004), 3916–3926.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Literature review Double porosity models, diffusion+advection

Notation

$$\begin{split} \Omega &= \bigcup_{i} \hat{\Omega}_{i}, \ \Omega_{slow} = \bigcup_{i=1} \Omega_{i}, \\ \partial \Omega_{slow} &\cap \partial \Omega_{fast} \equiv \bigcup_{i} \Gamma_{i} \\ \Omega &= \Omega_{slow} \cup \Omega_{fast} \cup \bigcup_{i} \Gamma_{i} \\ |\hat{\Omega}_{i}| &\approx \epsilon_{0} \end{split}$$

イロン イロン イヨン イヨン

Literature review Double porosity models, diffusion+advection

Averaged (single porosity) model

Compute homogenized coefficients D

$$\begin{split} \tilde{D}_{jk} &= \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(\mathbf{y}) (\delta_{jk} + \partial_k \omega_j(\mathbf{y})) dA \\ \begin{cases} -\nabla \cdot \mathbf{D} \nabla \omega_j(\mathbf{y}) &= \nabla \cdot (\mathbf{D} \mathbf{e}_j), \ \mathbf{y} \in \Omega_0 \\ \omega_j & \Omega_0 - \text{periodic} \end{cases} \end{split}$$

Literature review Double porosity models, diffusion+advection

Averaged (single porosity) model

Compute homogenized coefficients $\tilde{\mathbf{D}}$

$$\begin{split} \tilde{D}_{jk} &= \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(\mathbf{y}) (\delta_{jk} + \partial_k \omega_j(\mathbf{y})) dA \\ \begin{cases} -\nabla \cdot \mathbf{D} \nabla \omega_j(\mathbf{y}) &= \nabla \cdot (\mathbf{D} \mathbf{e}_j), \ \mathbf{y} \in \Omega_0 \\ \omega_j & \Omega_0 - \text{periodic} \end{split}$$

But this doesn't work very well for time-dependent problems with large contrast $D_{\textit{fast}}/D_{\textit{slow}}$

Małgorzata S. Peszyńska, Ralph E. Showalter

Nonlocal models of transport in multiscale porous media:something old and so

Literature review Double porosity models, diffusion+advection

Double porosity model: main idea I

Compute homogenized coefficients $\tilde{\mathbf{D}}$

$$\begin{split} \tilde{D}_{jk} &= \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(\mathbf{y}) (\delta_{jk} + \partial_k \omega_j(\mathbf{y})) dA \\ \begin{cases} -\nabla \cdot \mathbf{D} \nabla \omega_j(\mathbf{y}) &= \nabla \cdot (\mathbf{D} \mathbf{e}_j), \ \mathbf{y} \in \Omega_{0, \textit{fas}_i} \\ \omega_j & \Omega_0 - \text{periodic} \end{split}$$

Literature review Double porosity models, diffusion+advection

Double porosity model: main idea I

Compute homogenized coefficients $\tilde{\mathbf{D}}$

$$\begin{split} \tilde{D}_{jk} &= \frac{1}{|\Omega_0|} \int_{\Omega_0} D_{jk}(\mathbf{y}) (\delta_{jk} + \partial_k \omega_j(\mathbf{y})) dA \\ \begin{cases} -\nabla \cdot \mathbf{D} \nabla \omega_j(\mathbf{y}) &= \nabla \cdot (\mathbf{D} \mathbf{e}_j), \ \mathbf{y} \in \Omega_{0, \textit{fas}i} \\ \omega_j & \Omega_0 - \text{periodic} \end{split}$$

This formulation introduces nonlocal effects and works very well for time-dependent problems with large contrast D_{fast}/D_{slow}

Małgorzata S. Peszyńska, Ralph E. Showalter Nonlocal models of transport in multiscale porous media:something old and so

Literature review Double porosity models, diffusion+advection

Double porosity model: main idea II replaced by homogenized model with two sheets Exact model at microscale with **D** plus cell model $\mathbf{D} = \mathbf{D}_{slow}, \mathbf{D}_{fast}$ Global equation, $x \in \Omega$ $\phi_{slow} \frac{\partial c_i}{\partial t} - \nabla \cdot \mathbf{D}_{slow} \nabla c_i = \mathbf{0}$ $c_i|_{\Gamma_i} = \Pi_{0,i}(\tilde{c})$ $\tilde{\phi} \frac{\partial \tilde{c}}{\partial t} + \sum_{i} \chi_{i} q_{i}(t) - \nabla \cdot \tilde{\mathbf{D}} \nabla \tilde{c} = 0$ $\mathbf{q}_i(t) = \Pi_{0,i}^*(\Pi_{0,i}(\tilde{c}))$

This formulation works well for single & multi-phase multicomponent problems and has been implemented in commercial reservoir simulators

Małgorzata S. Peszyńska, Ralph E. Showalter Nonlocal models of transport in multiscale porous media:something old and so

Literature review Double porosity models, diffusion+advection

Recall double porosity models for diffusion Exact ϵ_0 model $\mathcal{F}_{\epsilon_0}(\Theta_{\epsilon_0}) = 0$

$$\phi_{\alpha}\frac{\partial \boldsymbol{c}_{\alpha}}{\partial t} - \nabla \cdot \boldsymbol{\mathsf{D}}_{\alpha} \nabla \boldsymbol{c}_{\alpha} = \boldsymbol{\mathsf{0}}, \ \boldsymbol{\mathsf{x}} \in \boldsymbol{\Omega}_{\alpha}, \ \alpha = \textit{fast}, \textit{slow}$$

plus interface conditions on $\partial \Omega_{slow} \cap \partial \Omega_{fast}$:

$$c_{\text{fast}} = c_{\text{slow}}, \ \mathbf{D}_{\text{fast}} \nabla c_{\text{fast}} \cdot \nu = \mathbf{D}_{\text{slow}} \nabla c_{\text{slow}} \cdot \nu$$

Approximate microstructure model [Arb89a, Arb97] $\tilde{\mathcal{F}}_{ro}(\tilde{\Theta}_{ro}) = \mathbf{0}$

$$ilde{\phi} rac{\partial ilde{m{c}}}{\partial t} + \sum_i \chi_i m{q}_i(t) -
abla \cdot ilde{m{D}}
abla ilde{m{c}} = m{0}$$

 $\boldsymbol{q}_i(\boldsymbol{t}) = \Pi^*_{0,i}(\Pi_{0,i}(\tilde{\boldsymbol{c}}))$

 also for multiphase problems[DA90]

Małgorzata S. Peszyńska, Ralph E. Showalter

Homogenized model
[ADH90, HS90, Pes92]
$$\mathcal{F}_{\epsilon}(\Theta_{\epsilon}) \rightarrow \mathcal{F}_{0}(\Theta_{0}) = 0$$

$$ilde{\phi} rac{\partial ilde{m{c}}}{\partial t} + au * rac{\partial ilde{m{c}}}{\partial t} -
abla \cdot ilde{m{D}}
abla ilde{m{c}} = m{0},$$

- analysis and convergence
- computational approach/Pes95, Pes96, DPS971

Literature review Double porosity models, diffusion+advection

Local (cell) problem and averages Π_0, Π_0^*

Local averages $\Pi_{0,i}, \Pi_{0,i}^*$

$$\begin{aligned} \Pi_{0,i}\xi &:= \frac{1}{|\hat{\Omega}_{i}|} \int_{\hat{\Omega}_{i}} \xi(\mathbf{x}) dA \\ \Pi_{0,i}^{*}\gamma &:= \frac{1}{|\hat{\Omega}_{i}|} \int_{\Gamma_{i}} \mathbf{D}_{slow} \nabla c_{i}(\gamma)(\mathbf{x},t) \cdot \nu ds = \Pi_{0,i}(\phi_{slow} \frac{\partial c_{i}(\gamma)}{\partial t}) \end{aligned}$$

where $c_i = c_i(\gamma)$ solves the local (cell) problem

$$\begin{split} \phi_{\text{slow}} \frac{\partial \boldsymbol{c}_i}{\partial t} - \nabla \cdot \boldsymbol{\mathsf{D}}_{\text{slow}} \nabla \boldsymbol{c}_i &= \boldsymbol{0}, \boldsymbol{x} \in \Omega_i, \\ \boldsymbol{c}_i &= \gamma(\boldsymbol{x}, t), \boldsymbol{x} \in \partial \Omega_i \end{split}$$

< ロ > < 同 > < 三 > < 三 > -

Literature review Double porosity models, diffusion+advection

Double porosity models for diffusion-advection

Exact ϵ_0 model $\mathcal{F}_{\epsilon_0}(\Theta_{\epsilon_0}) = 0$

$$\phi \frac{\partial \boldsymbol{c}_{\alpha}}{\partial t} - \nabla \cdot (\boldsymbol{\mathsf{D}}_{\alpha} \nabla \boldsymbol{c}_{\alpha} - \boldsymbol{\mathsf{u}}_{\alpha} \boldsymbol{c}_{\alpha}) = \boldsymbol{\mathsf{0}}, \ \, \boldsymbol{\mathsf{x}} \in \Omega_{\alpha}, \ \, \alpha = \textit{fast}, \textit{slow}$$

0

plus interface conditions on $\partial \Omega_{slow} \cap \partial \Omega_{fast}$

Approximate microstructure model [Arb89b] $\tilde{\mathcal{F}}_{co}(\tilde{\Theta}_{co}) = 0$

$$\tilde{\phi} \frac{\partial \tilde{\boldsymbol{c}}}{\partial t} + \sum_{i} \chi_{i} \boldsymbol{q}_{i} - \nabla \cdot (\tilde{\boldsymbol{\mathsf{D}}} \nabla \tilde{\boldsymbol{c}} - \tilde{\boldsymbol{\mathsf{u}}} \tilde{\boldsymbol{c}}) = \boldsymbol{\mathsf{0}},$$

 $\boldsymbol{q}_i(\boldsymbol{t}) = \Pi^*_{1,i}(\Pi_{1,i}(\tilde{\boldsymbol{c}}))$

 $\Pi_1 = \text{local } L_2 \text{ projections onto linears,}$ $\Pi_1^* \text{ its dual.}$ Numerical model only.

Limit
$$\epsilon \to 0 \mod[DS01] \mathcal{F}_0(\Theta_0) = 0$$

$$\begin{split} ec{b} & rac{\partial ilde{m{c}}}{\partial t} + \phi_{slow} rac{\partial ilde{m{c}}}{\partial t} -
abla \cdot (ilde{m{D}}
abla ilde{m{c}} - ilde{m{u}} ilde{m{c}}) = 0 \ & \phi_{slow} rac{\partial ilde{m{c}}}{\partial t} pprox \Pi_{0,i}^*(\Pi_{1,i}(ilde{m{c}})) \end{split}$$

$$\label{eq:slow} \begin{split} \Pi_1 = & \text{local Taylor. Cell problem:} \\ \textbf{u}_{\textit{slow}} \approx 0, \, \text{symmetry exploited.} \end{split}$$

Why these are not enough ... and other related results

Approximate microstructure model [Arb89b] $\vec{\mathcal{F}}_{r_0}(\Theta_{r_0}) = 0$	Limit $\epsilon \to 0 \mod[DS01] \mathcal{F}_0(\Theta_0) = 0$
	Cell problem: $\mathbf{u}_{slow} \approx 0$. Use Π_0^* for
Numerical model only.	flux.
Want to have $ ilde{\mathcal{F}}_{\epsilon_0}(ilde{\Theta}_{\epsilon_0})=0$	
constructed with "global" (upscaled) flavor (akin diffusion model	

 $\tilde{\phi} \frac{\partial \tilde{c}}{\partial t} + \tau * \frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\tilde{\mathbf{D}} \nabla \tilde{c} - \tilde{\mathbf{u}} \tilde{c}) = 0,)$ or secondary diffusion as in [CS95]

- account for (lack of) separation of scales *ϵ*₀ > 0 and advection-dispersion
- track transition between different regimes of phenomena

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why these are not enough ... and other related results

Approximate microstructure model	Limit $\epsilon \to 0 \mod[DS01] \mathcal{F}_0(\Theta_0) = 0$
$[Arb89b] \mathcal{F}_{\epsilon_0}(\Theta_{\epsilon_0}) = 0$	Cell problem: $\mathbf{u}_{slow} \approx 0$. Use Π_0^* for
Numerical model only.	flux.

Want to have $\tilde{\mathcal{F}}_{\epsilon_0}(\tilde{\Theta}_{\epsilon_0}) = 0$

constructed with "global" (upscaled) flavor (akin diffusion model $\tilde{\phi} \frac{\partial \tilde{c}}{\partial t} + \tau * \frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\tilde{\mathbf{D}} \nabla \tilde{c} - \tilde{\mathbf{u}} \tilde{c}) = 0$,) or secondary diffusion as in [CS95]

- account for (lack of) separation of scales *ϵ*₀ > 0 and advection-dispersion
- track transition between different regimes of phenomena

Other models known in hydrology/ applied math and geosciences

- Gerke van Genuchten 1993 (for Richards' equation)
- nonlocal models of dispersion (Cushman et al)

Małgorzata S. Peszyńska, Ralph E. Showalter

Ideas and steps

Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Building the upscaled model $ilde{\mathcal{F}}_{\epsilon_0}(ilde{\Theta}_{\epsilon_0}) = 0$

Want to have $ilde{\mathcal{F}}_{\epsilon_0}(ilde{\Theta}_{\epsilon_0}) = 0$

constructed with "global" flavor.

- Computational experiments on microscale
- Building the model
 - use the model *á la* [*Arb89b*] but with different Π_1, Π_1^* ,
 - construct convolution approximations of all terms á la [Pes92] with a family of kernels
- simulate the upscaled nonlocal model for a continuum of regimes of phenomena
 - kernels reflect the regimes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Computational experiments at microscale

GOAL: reproduce qualitatively experimental results, understand significance of different regimes of flow and trasport

Małgorzata S. Peszyńska, Ralph E. Showalter Nonlocal models of transport in multiscale porous media:something old and so

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Choice of ffine approximations Π_1

Recall $\Pi_0 f := \frac{1}{|\Omega_0|} \int_{\Omega_0} f(\mathbf{x}) dA$, assume here $|\Omega_0| = 1$. Denote \mathbf{x}^C - center of mass of Ω_0 . General affine approximation $f(\mathbf{x}) \approx \Pi_1 f := m + \mathbf{n} \cdot \mathbf{x}, \ \mathbf{x} \in \Omega_0$

Choice of *m*, **n**

- Taylor ($f \in C^1(\Omega_0)$) about midpoint $f(\mathbf{x}) \approx f(\mathbf{x}^C) + \nabla f(\mathbf{x}^C)(\mathbf{x} \mathbf{x}^C)$
- $L_2(\Omega_0)$ -projection onto affines that is: $(f, v)_{\Omega_0} = (m + \mathbf{n} \cdot \mathbf{x}, v)_{\Omega_0}, \forall \text{ affine } v$
- $H^1(\Omega_0)$ projection: $f(\mathbf{x}) \approx \Pi_1 f := \Pi_0 f + \Pi_0 \nabla f \cdot (\mathbf{x} - \mathbf{x}^C)$ Basis functions not necessarily orthogonal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Dual affine approximations Π_1^* to Π_1

• $L_2(\Omega_0)$ -projection onto affines, use an orthonormal basis (ϕ_0, ϕ_1, ϕ_2)

$$\Pi_1 f(\mathbf{x}) = \sum_k f_k \phi_k(\mathbf{x})$$

Flux calculations

$$\Pi_1^* \boldsymbol{q} = \sum_k q_k \phi_k(\mathbf{x}), \ \ \boldsymbol{q}_k = \Pi_0(\boldsymbol{q}\phi_k)$$

• $H^1(\Omega_0)$ projection:

$$f(\mathbf{x}) \approx \Pi_0 f + \Pi_0 \nabla f \cdot (\mathbf{x} - \mathbf{x}^C)$$

Note $(1, (\mathbf{x} - \mathbf{x}^C)_1, (\mathbf{x} - \mathbf{x}^C)_2)$ are not necessarily orthogonal !

$$\Pi_1^* q = q_0 \xi_0(\mathbf{x}) + q_1 \xi_1(\mathbf{x}) + q_2 \xi_2(\mathbf{x})$$

We use $H^1(\Omega_i)$ -projection denoted $\Pi_{1,i} \equiv \Pi_i$ and $Pi_{1,i}^* \equiv \Pi_i^*$

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Calculate Π_i and Π_i^*

Recall $\prod_i : H^1(\Omega) \mapsto H^1(\hat{\Omega}_i)$ $\Pi_{i}(w)(\mathbf{x}) \equiv \frac{1}{|\hat{\Omega}_{i}|} \left(\int_{\hat{\Omega}_{i}} w(\mathbf{y}) \, dA + \sum_{i=1}^{2} \left[\int_{\hat{\Omega}_{i}} \partial_{k} w(\mathbf{y}) \, dA \right] \, (x_{k} - (\hat{\mathbf{x}}_{i}^{C})_{k}) \right)$ Dual $\prod_{i=1}^{k} (H^{1}(\hat{\Omega}_{i}))^{*} \mapsto (H^{1}(\Omega))^{*}$ affine approximation of flux $a \in H^{-1/2}(\Gamma_i)$ $\langle \prod_{i=1}^{*}(q), w \rangle = \langle q, \prod_{i=1}^{*}(w) \rangle, \forall w \in C_{0}^{\infty}(\Omega)$ with $\langle q, v \rangle := \sum_{i} \int_{\Gamma_i} q(s) v(s) ds$ uses moments M_i^0, \mathbf{M}_i^1 $\langle q, \Pi_i(w) \rangle = \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} q(s) \left| \int_{\hat{\Omega}_i} w dA + (s - \mathbf{x}_i^c) \int_{\hat{\Omega}_i} \nabla w ds \right|$ $= \int_{\Omega} \bar{\chi}_i(\mathbf{x}) \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} q(s) ds w(\mathbf{x}) dA + \int_{\Omega} \bar{\chi}_i(\mathbf{x}) \frac{1}{|\hat{\Omega}_i|} \int_{\Gamma_i} q(s) (\mathbf{s} - \mathbf{x}^C) ds \cdot \nabla w(\mathbf{x}) dA$ $= \int \bar{\chi}_i(\mathbf{x}) M_i^0(q) w(\mathbf{x}) dA - \int_{\mathbb{T}} \nabla \cdot (\bar{\chi}_i(\mathbf{x}) \mathbf{M}_i^1(q)) w(\mathbf{x}) dA = \langle \mathbf{u}_i^*(q), w \rangle_{\mathbb{T}} \quad \text{for all } i < 1 \text{ for all } i < 1 \text{ forall } i < 1 \text{ for all } i < 1 \text{ fora$

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Calculations Π_i and Π_i^* summary

Affine approximation $\Pi_i : H^1(\Omega) \mapsto H^1(\hat{\Omega}_i)$

$$\Pi_i(w)(x) \equiv \Pi_0 w + \Pi_0(\nabla w) \cdot (\mathbf{x} - \mathbf{x}^C)$$

Its dual $\Pi_i^* : H^1(\hat{\Omega}_i)^* \mapsto H^1(\Omega)^*$ pointwise

$$\Pi_i^*(q)(\mathbf{x}) = \bar{\chi}_i(\mathbf{x}) M_i^0(q) - \nabla \cdot \bar{\chi}_i(\mathbf{x}) \mathbf{M}_i^1(q)$$

Note the last term is a scaled line source !

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Application of Green's theorem to moments

For any smooth region *D*, smooth $\mathbf{v} = (v_1, v_2)$ and $\hat{\mathbf{x}}^C \in D$,

$$\int_{D} (\nabla \cdot \mathbf{v}) (\mathbf{x}_{k} - (\hat{\mathbf{x}}^{C})_{k}) d\mathbf{A} = \int_{\partial D} \mathbf{v} \cdot \nu (\mathbf{x}_{k} - (\hat{\mathbf{x}}^{C})_{k}) d\mathbf{s} - \int_{D} v_{k} d\mathbf{A}$$

hence for the flux from the cell $q(s) = (\mathbf{D}_i \nabla c_i(s) - \mathbf{v}_i c_i(s)) \cdot \nu$

$$\begin{split} \mathbf{M}_{i}^{1}(\boldsymbol{q}) &= \int_{\Omega_{i}} \left(\nabla \cdot \left(\mathbf{D}_{i} \nabla c_{i}(\mathbf{y}, t) - \mathbf{v}_{i} c_{i}(\mathbf{y}, t) \right) \left(\mathbf{y} - \hat{\mathbf{x}}_{i}^{C} \right) + \mathbf{D}_{i} \nabla c_{i}(\mathbf{y}, t) - \mathbf{v}_{i} c_{i}(\mathbf{y}, t) \right) dA \, . \\ &= -\sum_{i} \bar{\chi}_{i}(\mathbf{x}) \int_{\Omega_{i}} (\phi_{i} \frac{\partial c_{i}}{\partial t}(\mathbf{y}, t) (\mathbf{y} - \hat{\mathbf{x}}_{i}^{C}) + \mathbf{D}_{i} \nabla c_{i}(\mathbf{y}, t) - \mathbf{v}_{i} c_{i}(\mathbf{y}, t)) dA \end{split}$$

< □ > < □ > < □ > < □ > < □ >

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Cell problem: elementary solutions

Cell problem solved for u_i^j , j = 0, 1, 2

$$\begin{split} \phi_{slow} \frac{\partial u_i^j}{\partial t} - \nabla \cdot \left(\mathbf{D}_{slow} \nabla u_i^j - \mathbf{u}_{slow} u_i^j \right) &= 0, \mathbf{x} \in \Omega_i \\ u_i^j(\mathbf{x}, 0) &= 0, \mathbf{x} \in \Omega_i \\ \begin{cases} u_i^0 |_{\Gamma_i} &= 1, \\ u_i^1 |_{\Gamma_i} &= (\mathbf{x} - \mathbf{x}_i^C)_1, \\ u_i^2 |_{\Gamma_i} &= (\mathbf{x} - \mathbf{x}_i^C)_2 \end{cases} \end{split}$$

Represent the solution to the cell problem

$$\begin{split} \phi_{slow} \frac{\partial c_i}{\partial t} - \nabla \cdot (\mathbf{D}_{slow} \nabla c_i - \mathbf{u}_{slow} c_i) &= 0, \mathbf{x} \in \Omega_i, \\ c_i(\mathbf{x}, 0) &= 0, \mathbf{x} \in \Omega_i \\ c_i|_{\Gamma_i} &= \Pi_{1,i}(c_*)(\mathbf{x}, t) \\ &\equiv A_i^0(t) + (A_i^1, A_i^2) \cdot (\mathbf{x} - \mathbf{x}_i^C), \end{split}$$
By linearity $c_i(\mathbf{x}, t) = \int_0^t \sum_{j=0}^2 \frac{\partial u_i^j}{\partial t} (\mathbf{x}, t - s) A_i^j(s) ds = \sum_{j=0}^2 \frac{\partial u_j^j(\mathbf{x}, \cdot)}{\partial t} * A_i^j$

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Putting it together

 $C_i|_{\Gamma_i}$

Solution to the cell problem $c_i(\mathbf{x}, t) = \sum_{j=0}^2 \frac{\partial u_i^j(\mathbf{x}, \cdot)}{\partial t} * A_i^j$

$$\begin{split} \phi_{slow} \frac{\partial \boldsymbol{c}_i}{\partial t} - \nabla \cdot \left(\boldsymbol{\mathsf{D}}_{slow} \nabla \boldsymbol{c}_i - \boldsymbol{\mathsf{u}}_{slow} \boldsymbol{c}_i \right) &= 0, \mathbf{x} \in \Omega_i \\ \boldsymbol{c}_i(\mathbf{x}, 0) &= 0, \mathbf{x} \in \Omega_i \\ = \Pi_{1,i}(\boldsymbol{c}_*)(\mathbf{x}, t) \equiv \boldsymbol{A}_i^0(t) + (\boldsymbol{A}_i^1, \boldsymbol{A}_i^2) \cdot (\mathbf{x} - \hat{\boldsymbol{x}}_i^C), \mathbf{x} \in \Gamma_i \end{split}$$

Use
$$u_i^j$$
 and A_j so that $\Pi_{1,i}(\boldsymbol{c}_*)(\mathbf{x},t) \equiv A_i^0(t) + (A_i^1,A_i^2) \cdot (\mathbf{x} - \hat{x}_i^C)$

Compute the normal flux

$$q(s) \equiv (\mathbf{D}_{slow}
abla c_i - \mathbf{u}_{slow} c_i) \cdot \eta, s \in \Gamma_i$$

... and its affine approximations $\Pi_{1,i}^* q$ using A_j, u_i^j ... and the moments $M_i^0(q), \mathbf{M}_i^1(q)$.

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Convolution kernels

Write the moments $M_i^0(q)$, $\mathbf{M}_i^1(q)$ in terms of A_k and u_i^j

Define the kernels for each *i* and each function u_i^j , j = 0, 1, 2 by

$$\begin{split} \mathcal{S}_{i}^{j0}(t) &\equiv \int_{\Omega_{i}} \phi_{i} \frac{\partial u_{i}^{j}}{\partial t}(\mathbf{x}, t) \, dA, \quad 0 \leq j \leq 2. \\ \mathcal{S}_{i}^{jk}(t) &\equiv \int_{\Omega_{i}} \phi_{i} \frac{\partial u_{i}^{j}}{\partial t}(\mathbf{x}, t)(\mathbf{x}_{k} - (\hat{\mathbf{x}}_{i}^{\mathsf{C}})_{k}) \, dA, \quad 1 \leq k \leq 2 \\ \mathbf{T}_{i}^{j}(t) &\equiv (T_{i}^{j1}, T_{i}^{j2}) \equiv \int_{\Omega_{i}} (\mathbf{D}_{i} \nabla - \mathbf{v}_{i}) \frac{\partial u_{i}^{j}}{\partial t}(\mathbf{x}, t) \, dA. \end{split}$$

Together we have 15 scalar kernels, some of which will be zero due to symmetry/lack of thereof

Małgorzata S. Peszyńska, Ralph E. Showalter Nonlocal models of transport in multiscale porous media:something old and so

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Computational experiments

Model summary (suppress *i*, $\bar{\chi}_i$ etc.)

$$\frac{\partial}{\partial t} \{ \phi_* \boldsymbol{c}_* + \boldsymbol{\mathcal{S}}^{00} * \boldsymbol{c}_* + (\boldsymbol{\mathcal{S}}^{01}, \boldsymbol{\mathcal{S}}^{02}) * \nabla \boldsymbol{c}_* - \nabla \cdot (\boldsymbol{\mathcal{S}}^{10} * \boldsymbol{c}_* + (\boldsymbol{\mathcal{S}}^{11}, \boldsymbol{\mathcal{S}}^{12}) * \nabla \boldsymbol{c}_*) \} \\ - \nabla \cdot \{ \boldsymbol{\mathsf{D}}_* \nabla \boldsymbol{c}_* - \boldsymbol{\mathsf{v}}_* \boldsymbol{c}_* + \boldsymbol{\mathsf{T}}^0 * \boldsymbol{c}_* + (\boldsymbol{\mathsf{T}}^1, \boldsymbol{\mathsf{T}}^2) * \nabla \boldsymbol{c}_* \} = \boldsymbol{\mathsf{0}} \}$$

- Convolution kernels for different regimes of diffusion vs advection
 - no advection
 - with advection
 - with significant advection
- Upscaled problem with nonlocal terms
- Comparison between exact model and upscaled model with nonlocal terms and computed kernels

< ロ > < 同 > < 回 > < 回 >

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Convolution kernels: regimes of $Pe = \frac{advection}{diffusion}$

Solution u^{j} and the associated kernels S^{j0} , S^{j1} , T^{j1}

Małgorzata S. Peszyńska, Ralph E. Showalter Nonlocal models of transport in multiscale porous media:something old and so

< ロ > < 同 > < 三 > < 三 > -

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Upscaled model: numerical treatment

- nonlocal diffusion (FE+time-stepping on c_t) [Pes95] stable, convergence $O(\triangle t + h^2)$, singular kernels
- nonlocal diffusion with secondary diffusion terms (as in viscoelasticity) ([*Thomee,Lin,Ewing'91-'01*]) with nonsingular kernels
- nonlocal advection (FD+time-stepping): stable, convergent O(△t + h) [P06], singular kernels
- nonlocal advection+diffusion+secondary diffusion+secondary advection:
 - issues of memory storage, need adaptive treatment
 - relative importance of the terms ∇*c*_{*}, ∇²*c*_{*}: adaptivity a must

- pore-scale modeling (with K. Augustson)
- unsaturated flow models
- use experimental results by Wildenschild
 et al.

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

<ロ> <同> <同> <同> < 同> < 同> < 同> = 同

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Connection to mortar upscaling

[PWY02, Pes05]

イロト イヨト イヨト イヨト

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

<ロ> <同> <同> <同> < 同> < 同> < 同> = 同

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

Summary: the upscaled model

-

$$\begin{aligned} \frac{\partial}{\partial t} \left(\phi_* \boldsymbol{c}_*(\boldsymbol{x}, t) + \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \mathcal{S}_i^{00}(t-\tau) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \right. \\ &+ \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=1}^2 \mathcal{S}_i^{j0}(t-\tau) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \\ -\nabla \cdot \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=0}^2 (\mathcal{S}_i^{j1}(t-\tau), \mathcal{S}_i^{j2}(t-\tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \\ &- \nabla \cdot (\mathbf{D}_* \nabla \boldsymbol{c}_*(\boldsymbol{x}, t) - \mathbf{v}_* \boldsymbol{c}_*(\boldsymbol{x}, t) \\ &+ \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=0}^2 (T_i^{j1}(t-\tau), T_i^{j2}(t-\tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \\ &+ \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=0}^2 (T_i^{j1}(t-\tau), T_i^{j2}(t-\tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \\ &+ \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=0}^2 (T_i^{j1}(t-\tau), T_i^{j2}(t-\tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \\ &+ \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=0}^2 (T_i^{j1}(t-\tau), T_i^{j2}(t-\tau)) \frac{1}{|\hat{\Omega}_i|} \int_{\hat{\Omega}_i} \partial_j \boldsymbol{c}_*(\boldsymbol{y}, \tau) \, dA \, d\tau \\ &+ \sum_{i=1}^N \bar{\chi}_i(\boldsymbol{x}) \int_0^t \sum_{j=0}^N \boldsymbol{x} \in \hat{\Omega}, \ t \ge 0. \\ \end{bmatrix}$$

Ideas and steps Computational experiments Construct affine approximations Model calculations Computational experiments with elements of upscaled model

<ロ> <同> <同> <同> < 同> < 同> < 同> = 同