Hybrid modeling

Małgorzata Peszyńska 1

Department of Mathematics, Oregon State University

Math Grads Seminar, February 20, 2013

[http://www.math.oregonstate.edu/people/view/mpesz]

¹Supported by NSF DMS "Hybrid modeling for porous media" and NSF DMS "SOLAR: Enhanced Photovoltaic Efficiency through Heterojunction Assisted Impact Ionization"

Multiple scales

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Computational modeling across scales

Example: energy recovery/carbon sequestration

field (macro)

Iab=core (meso)

pore (micro)

🛯 ગવભ

Computational modeling across scales

Example: energy recovery/carbon sequestration

- field (macro) $U_t + A(U) = 0$
- lab=core (meso) $u_t + a(u) = 0$
- pore (micro) $\frac{d}{dt}\sum_{i}u_{i}+a_{i}\sum_{j}u_{i}u_{j}=0$

continuum models

continuum or discrete models

statistical mechanics

・ロト ・聞 ト ・ヨト ・ヨト 三星

Data for modeling

For continuum models at macroscale or mesoscale

$$U_t + A(u) = 0$$

or

$$u_t + a(u) = 0$$

... need coefficients A, a and more ...

Old way: laboratory experiments

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

In silicio modeling and experiments

Performed on computer or via computer simulation

(C)

Fig. 5—3D network representation of a water-wet sandstone sample; the network description is courtesy of Statoil. The network dimensions are in meters.

Fig. 18—The calculated capillary-pressure curve in primary drainage of the Benthelmer sandstone network vs. the Statoll results (circles) from P.-E. Oren, et al.

▲ロト ▲周 ト ▲ヨ ト ▲ヨ ト 「ヨ 」 の Q (>

Hybrid modeling across scales

Combine dynamically the three scales

▲ロト ▲周 ト ▲ヨ ト ▲ヨ ト 「ヨ 」 の Q (>

Example: adsorption models

$$u_t + v_t + u_x = 0,$$

$$v = g(u)$$

Traditional experiment-based model (Langmuir isotherm)

$$v = g(u) = V_L \frac{bu}{1+bu}$$

Need V_L, b from experiments

g(u) Computer simulation model statistical mechanics, equilibrium mean-field Ising-like model

[Peszynska'11-12]

What is better? Why need extra models?

How to model adsorption hysteresis $v \in g(u, u_t)$?

Get $v \in g(u, u_t)$ from

Example: how to get $g(\cdot)$ from porescale models

[with D. Wildenschild, A. Trykozko, others (OSU/UWarsaw)]

Tomography (x-ray) images \implies Porescale models $\implies v \in g(u)$

• Geometry from tomography

Computational models (discrete: statistical mechanics)

• Result: $v \in g(u)$

Example: slow, fast, very fast flow

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Porescale: computational math aspects

Convergence of results models

Invariance with respect to rotation

• New model at corescale found (non-Darcy, $\alpha \approx 2.5$ in 2D, $\alpha \approx 1.2$ in 3D)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ● ● ●

[PTrykozko'Comp.Geosci.2013,]

Example: semiconductor modeling (solar cells)

[with G. Schneider, D. Foster, T. Costa, and others (OSU, UfO Physics, Chemistry)]

- Nonlinear coupled PDEs (electron/hole concentrations n, p, potential ψ)
- Discrete model to describe Heterogeneity Assisted Impact Ionization (on interfaces)
- MAIN ISSUE: how to couple them ?

Schematic of a three-component HAII structure formed by self assembly of quantum dot harvesters (green) by Stranski-Krastanov growth on a narrower band gap host (red), followed by an additional layer of the host and a wide band gap capping layer (blue).

(ロ) (目) (日) (日) (日) (日) (日)

Example: methane hydrates modeling and phase transitions

$$u_t - v_{xx} = \mathbf{0}, \ u \in \alpha(v)$$

At world scale

- At macroscale [GMPS'12]
- At mesoscale
- At molecular scale

Models at pore2core

	core continuum	pore continuum	pore discrete
VARIABLE	$V=$ average over ϕ	v=local value	$\langle V \rangle_{P[\mathbf{t},\mathbf{n}]}, \bar{V}, \sum_{i} V_{i}$
FLOW	DARCY	NAVIER-STOKES	LB
TRANSPORT			2
porosity	ϕ	1	$\frac{\sum_i n_i}{13}$
mass (molar) fractions	pС	x _{pC}	ρ_a, ρ_b
flux	$J = -DS_p \nabla_{pC}$	$j = -d\nabla x_C$	
diffusivity	$D = \phi \frac{d}{\theta^2} \propto d\phi^m$	d	
ADSORPTION			
amount	$a_i = V_{L,i} \frac{b_i p_i}{1 + \sum_i b_i p_i}$	b.cond. ?	mean-field approx.
PHASE BEHAVIOR			
saturation	S	s ?	
flow	k_{rl}, k_{rg}, P_c	multiphase N-S	LB
constraints	P_{sat} or $(_{IM}, S_l) \in F$	p_{sat} or $(x_{IM}, s_I) \in f$?	STALMECH.
ENERGY			
temperature T			
enthalpy	$cI + H_{\phi}(T)$	cI + LH(T)	STAL MECH.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

Interested in hybrid models ?

Modeling + Analysis + Simulation

Modeling: existing and new models

applications: geosciences, physics, engineering, biology

- Continuum (empirical) models: ODEs, PDEs:
- <u>Discrete</u> models (deterministic and stochastic) equilibrium and non-equilibrium (dynamic)
- (Coupling) between continuum and discrete models

Analysis

understanding properties, analyzing well-posedness

• Computation and simulation

- use/analyze/develop existing/new methods for new applications
- implement/develop known/new algorithms
- NEW technologies

Classes: [PDEs + Analysis + Numerical Analysis/Computing + Probability] Interested ? Email me to meet.