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Abstract. We consider a simplified model of methane hydrates which we cast as a nonlinear evolution

problem. For its well-posedness we extend the existing theory to cover the case in which the problem

involves a measurable family of graphs. We represent the nonlinearity as a subgradient and prove a

useful comparison principle, thus optimal regularity results follow. For the numerical solution we apply

a fully implicit scheme without regularization and use semismooth Newton algorithm for a solver, and

the graph is realized as a complementarity constraint (CC). The algorithm is very robust and we

extend it to define an easy and superlinearly convergent fully implicit scheme for Stefan problem and

other multivalued examples.
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1. Introduction

In this paper we investigate a model of phase transitions occuring due to solubility constraints during

evolution of methane hydrates. We are interested specifically in the formation and dissociation of the

hydrate phase out of the methane dissolved in the liquid phase. The treatment of the general multiphase

multicomponent model including a gas phase or additional unknowns such as salinity, pressure and

temperature is outside the present study.

Our model is a single PDE with two unknowns, the solubility v and saturation S, bound together

by an inequality constraint that can be written in the form

∂u(v, S)
∂t

−4v = 0, 〈v, S〉 ∈ F,(1)

where u(v, S) is a function of v and S and F ⊆ R2 is a multivalued graph. All equations and inclusions

such as (1) will be made precise below, holding pointwise almost everywhere on a region or in an

appropriate function space.

We transform the model (1) to a form more convenient for analysis

∂u

∂t
−4v = 0, v ∈ α(u) ,(2)

where α is a maximal monotone graph. Formally equivalent to (2) is the formulation in terms of the

inverse β ≡ α−1. The model (2) has been the subject of intense analysis and approximation for the last
1
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four decades. The works summarized in [55] include those for the Stefan free-boundary problem and

the porous medium equation.

In a practical methane hydrates model, the graph F is parametrized by several independent and

dependent variables other than S, v, u. In the simplest variant F is strongly dependent on the depth of

the reservoir Ω, i.e., on the position variable x ∈ Ω,

〈v, S〉 ∈ F (x).(3)

In the transformed model, the variables u and v are related by a monotone graph relationship dependent

on x,

∂u

∂t
−4v = 0, v ∈ α(x;u).(4)

This additional parametrization is smooth in x but its analysis requires an extension of standard theory

for the porous medium equation. This is the main theoretical contribution here. Our analysis of (4)

supplemented by appropriate boundary and initial conditions is based on a normal convex integrand

construction extending the theory for the porous medium equation.

Next we take advantage of the physical meaning of F being a solubility constraint and rewrite it as a

nonlinear complementarity constraint (NCC). Here we follow the ideas in [23] which were recommended

to us by Peter Knabner [29]. While (4) is not merely a variational parabolic inequality, we can still draw

on the techniques that have recently become successful in solving the latter numerically. In particular,

we take advantage of the framework of semi-smooth Newton methods [54, 24] for solving the discrete

nonlinear problems under NCCs. To this aim, we formulate a fully discrete numerical model for (4)

and we rewrite (3) as

φ(x; v, S) = 0,(5)

where φ is some semismooth function [54] that is chosen appropriately corresponding to the given α.

The algebraic problem can be solved by a semismooth Newton method, and we have thereby resolved

a possibly singular graph relationship without regularization.

In fact, we can solve our problem in either (v, S) or in (v, u) formulations with convergence properties

not worse than those for the Stefan problem, while exploiting the ease and superlinear convergence

of the semismooth Newton methods. This is an important practical contribution. Furthermore, we

show that our algorithm is formally equivalent to the variable switching method used in engineering
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implementations of models similar to (4) [22, 41, 13] and in particular for methane hydrates [33] which

has not been analyzed.

The semismooth solver is in fact so robust that we test it on some multivalued examples. In addition,

we propose an appropriate φ for the Stefan problem using box constraints, and so its fully implicit

solution without regularization is very easy with a small mesh-independent number of iterations. This

is an improvement over regularized and relaxation-based solvers [38, 36, 3, 56].

Throughout the paper we adopt the following notation with which we distinguish pairs 〈u, v〉 ∈ f ⊂

R2 from the usual Cartesian coordinates (x, y) ∈ Ω ⊂ R2. The relation symbol 〈u, v〉 is also used in

the setting when u, v ∈ H and H is a Hilbert space. Furthermore, if f is a relation, we denote that

〈u, v〉 ∈ f by writing v ∈ f(u), and this emphasizes that f can be regarded as a set-valued function. If

f ⊂ R2 is a function in the usual sense, we write instead v = f(u), but we still identify f with its graph.

If 〈u, v〉 ∈ f , we define the inverse relation f−1 naturally by 〈v, u〉 ∈ f−1; then f−1 is a set-valued

function as well. For example, the Heaviside graph is described by

H ≡ {〈x, y〉 ∈ R2 : 0 ≤ y ≤ 1, yx ≥ 0, (y − 1)x ≥ 0}.(6)

If a graph f is dependent on a parameter x, we denote this by v ∈ f(x;u), and 〈u, v〉 ∈ f(x; ·), etc.

This paper is organized as follows. In Section 2 we develop the model and cast it in the form (4).

We analyze its well-posedness in Section 3 where particular attention is paid to the construction of an

appropriate normal convex integrand whose subgradient is the inverse β(x; ·) = α(x; ·)−1. In addition,

we demonstrate a comparison principle which lets us extend the graph β to one which is affine bounded

on all of R, and this helps to establish regularity of solutions. In Section 4 we discuss the discrete

scheme and prove some of its properties, as well as introduce the framework of semismooth Newton

methods. Numerical results are shown in Section 5.

2. Model development

Methane hydrates are an ice-like substance containing methane molecules trapped in a lattice of

water molecules. They are present in large amounts along continental slopes and in permafrost regions,

and modeling of their evolution is important, since the hydrates of methane and carbon dioxide play

important roles as both potential energy sources and environmental hazards [18, 53]. Here we consider

a simplified model of evolution of methane hydrates in the hydrate zone of the sea-bed. See [33, 40, 39]

for full model including the energy equation with latent heat, and multiple components in the presence

of multiple phases.
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Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded region of points x ∈ Ω. The properties of the sediment which

fills the region Ω are its porosity φ0 and permeability K0. For simplicity of the exposition we consider

these constant, but in general it is straighforward to extend the results below to the heterogeneous case

φ0(x),K0(x). In particular, it is generally true that both φ0(x),K0(x) decrease with depth. Next, let

P (x) and θ(x) denote the pressure and temperature in the reservoir, respectively. We assume these are

known and given by hydrostatic and geothermal gradients, respectively. In particular we note that both

P (x) and θ(x) increase with depth. This is a common characteristic of sea sediment hydrates [33].

We assume the pressure is high enough and temperature is low enough in Ω so that only the liquid and

hydrate phases can be present. The presence of these two phases is accounted for by their saturations,

i.e., void fractions, Sl, Sh, respectively. Since Sl + Sh ≡ 1, only one of these phase saturations is an

independent variable. We choose here the dominant liquid phase saturation and denote it by S ≡

Sl. The two phases have respective densities ρl, ρh which are mildly dependent on the pressures and

temperature. The liquid phase consists of water, salt, and methane components, and their corresponding

mass fractions are denoted by χlW , χlS , χlM , respectively. The hydrate phase is made of molecules of

water and of methane, with the mass fractions denoted by χhW , χhM . Because of the physical nature of

hydrate crystals which usually are built from a fixed proportion of methane and water molecules, it is

common to assume the last two are constants, while χlW , χlS , χlM are variables. In this paper we will

assume that χlS is known and fixed, with a value equal to that of seawater. Since for mass fractions

in the same phase we have χlW + χlS + χlM ≡ 1 [[31], (2.2.8a)], only one of the variables χlW , χlM is

independent, and we choose methane solubility χlM as the independent variable.

Under these assumptions, we only model the evolution of χlM and of Sl. The equations governing

these variables come from (i) the conservation of mass of methane, and from (ii) thermodynamics. Fur-

thermore, hydrostatic equilibrium is assumed here, so there is no flow of water phase and the evolution

of methane follows only via diffusion of methane molecules in the liquid phase. The coefficient DlM

may be dependent upon other quantities, but in this paper we assume it is constant. The conservation

of mass for the methane component takes the form

∂

∂t
(φ0SlρlχlM + φ0ShρhχhM )−∇ · (DlMρl∇χlM ) = fM .(7)

In this equation fM is an external source of methane, e.g., due to bacteria–induced methanogenesis.

Furthermore,

NM := SlρlχlM + ShρhχhM = SlρlχlM + (1− Sl)ρhχhM(8)
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is the total mass of methane per unit volume; NM accounts for the methane present both in the liquid

and hydrate phases. In summary, note that all the coefficients of (7) are given as data, and the only

independent variables are χlM , Sl. To complete the model, we need to tie these two unknowns χlM ,

Sl together. This is done consistent with the Gibbs phase rule [31] via thermodynamics of solubility

constraints.

2.1. Solubility constraints. The amount of methane that can be dissolved in the liquid phase depends

on the pressure Pl, temperature θ, and the salinity χlS . Conversely, these variables determine under

what circumstances Sl < 1, i.e., when the hydrate phase can be present. In the hydrate literature

[33, 52] the data for the maximum solubility constraint χmax
lM is provided as a function of P, θ, χlS .

Here we assume these variables are known functions of x so this provides us with χmax
lM = χmax

lM (x).

Typically, χmax
lM increases with depth within the hydrate zone; see [53, 33, 40]. Since we must have

χlM (x, t) ≤ χmax
lM (x) at any (x, t) ∈ Q̄, the quantity χmax

lM determines how the total amount of methane

NM is partitioned between the liquid and hydrate phases. If χlM (x, t) < χmax
lM (x), then only the liquid

phase is present, i.e., Sl(x, t) = 1. Then NM = ρlχlM and χlM determines the amount of methane and is

the independent variable. On the other hand, when the amount present reaches the maximum amount

that can be dissolved, i.e., NM = ρlχ
max
lM , the excess forms the hydrate phase with Sh = 1− Sl > 0. In

this case Sl becomes the independent variable while χlM (x, t) = χmax
lM (x) is fixed.

We express this process as was done succintly in [23] for a hydrogen model as
χlM ≤ χmax

lM , Sl = 1 ,

χlM = χmax
lM , Sl ≤ 1 ,

(χmax
lM − χlM )(1− Sl) = 0 .

(9)

This form shows that the solubility satisfies a nonlinear complementarity constraint (NCC). Our nu-

merical algorithm discussed in the sequel takes advantage of this form of the constraint. For analysis,

it is more convenient to write the constraint (9) as a multivalued graph

〈χlM , Sl〉 ∈ Fx := [0, χmax
lM ]× {1} ∪ {χmax

lM } × (0, 1].(10)

Note that since χmax
lM depends on x, the graph Fx is parametrized by x as well.

Remark 2.1. Strictly speaking, the graph (10) is only a subgraph of

〈χlM , Sl〉 ∈ F∞ := (−∞, χmax
lM ]× {1} ∪ {χmax

lM } × (−∞, 1],(11)
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truly equivalent to the NCC in (9). Throughout this paper we will assume that

Sl ≥ 0, χlM ≥ 0(12)

which turns (11) into (10). While (12) is required on physical grounds, it is not enforced in our

model as an additional constraint but rather follows as a consequence of the maximum principle. (See

Corollary 3.2.)

For the sake of exposition, we further simplify (7) and assume that

ρl ≈ const, ρh ≈ const, φ0 ≈ const, DlM = const.(13)

The simplifying assumptions let us further rewrite (7), upon algebraic manipulations, as

∂

∂t
(SlχlM +R(1− Sl))−∇ · (D0∇χlM ) = f(14)

where we have defined R := ρhχhM

ρl
, f := fM

ρlφ0
, D0 = DlM

φ0
.

2.2. Summary of the model with simplified notation. To avoid multiple subscripts, in the rest

of the paper we introduce the variables S = Sl, u = NM

ρl
, v = χlM , v∗ = χmax

lM . We rewrite the model

comprised of the partial differential equation (14) and constraint (9) as

∂u

∂t
−∇ · (D0∇v) = f, u := Sv +R(1− S),(15a)

〈v, S〉 ∈ F(x; ·) := [0, v∗(x)]× {1} ∪ {v∗(x)} × (0, 1].(15b)

We will assume henceforth that

v∗ : Ω → R is (at least) piecewise smooth,(16)

min
x∈Ω

(v∗(x)) ≥ v0 > 0, and(17)

R > max
x∈Ω

(v∗(x)).(18)

These assumptions are physically grounded. The diffusivity and maximum solubilities are always non-

negative, while (18) follows from thermodynamics and is true for available data, e.g., in [33, 52] that

we used in [40].

It is useful to derive an explicit relationship between u and v, and u and S. It is not hard to see that

〈v, u〉 ∈ βMH(x; ·) := {(v, v) : v ≤ v∗(x)} ∪ {v∗(x)} × [v∗(x), R)(19)
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The inverse of this relation for each x ∈ Ω,

v = αMH(x;u) = (u− v∗(x))− + v∗(x), u ≤ R,(20)

is a monotone Lipschitz function. We denote by u− = min(u, 0) the negative part of u. The constant

D0 can be included in the definition of α, so we set D0 = 1.

Remark 2.2. For each fixed x both αMH(x; ·) and βMH(x; ·) are monotone graphs.

Finally, S = S(x;u) is a function

S =
u−R

v −R
=

 1, u ≤ v∗(x),

u−R
v∗(x)−R , u > v∗(x),

(21)

which by (18) is monotone decreasing in u, with values in [0, 1] as long as 0 ≤ u ≤ R.

The model (15) is a nonlinear evolution problem which must be complemented by initial conditions

on u and boundary conditions in v. Its well-posedness and numerical approximation are discussed in

the sequel.

3. Analysis of PDE with parameter dependent family of graphs

We consider here the initial-boundary-value problem

∂u

∂t
−∆v = f, v ∈ α(·;u) on Ω× (0, T ),(22a)

v = 0 on ∂Ω× (0, T ),(22b)

u(·, 0) = u0(·) on Ω,(22c)

to be satisfied in an appropriate weak sense. Boundary conditions on ∂Ω other than homogeneous

Dirichlet type are needed for practical problems but for simplicity are not considered here. Our analysis

of (22) proceeds as follows. In Section 3.1 we review what is known about the special case corresponding

to v∗(x) = const, in which α is a single monotone Lipschitz function onto R and β = α−1 is an affine-

bounded graph. Next we develop in Section 3.2 the well-posedness for the x-dependent case α(x;u)

corresponding to a spatially dependent constraint v∗(x).

Let H = L2(Ω) denote the usual Lebesgue space with the scalar product (·, ·), and let V = H1
0 (Ω) be

the indicated Sobolev space with the scalar product (v, w)V = (∇v,∇w). Its dual space is V ′ = H−1(Ω),

and the Riesz map is given by −∆ : V → V ′. Note that V ⊂ H ⊂ V ′ and

(23) (f, g)V′ = ((−∆)−1f, (−∆)−1g)V = f((−∆)−1g), f, g ∈ V ′.
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An equation “on Ω” (or “on Ω × (0, T )”) means that it holds in V ′ or L1(Ω), (respectively, for a.e.

t ∈ (0, T )), and similarly for ∂Ω and ∂Ω× (0, T ).

3.1. Evolution equation with a single monotone graph. We recall some classical results on the

Dirichlet initial-boundary-value problem

∂u

∂t
−∆v = f, v ∈ α(u) on Ω× (0, T ),(24a)

v = 0 on ∂Ω× (0, T ),(24b)

u(·, 0) = u0(·) on Ω.(24c)

This can be formulated as an abstract initial-value problem

(25)
du(t)
dt

+A(u(t)) 3 f(t) a.e. on (0, T ], u(0) = u0,

in a Banach or Hilbert space setting with

A = −4 ◦α(26)

on the appropriate domain D(A). There are two notions of solution:

u ∈ C([0, T ], L1(Ω)) with v(t) ∈W 1,1
0 (Ω), ∆v(t) ∈ L1(Ω),(27)

u ∈ W 1,1([0, T ],V ′) with v(t) ∈ V.(28)

These follow since the operator A is m-accretive on the Banach space L1(Ω) and on the Hilbert space

V ′, respectively. If the initial value u0 ∈ L1(Ω) ∩ V ′, our solution satisfies both [50].

3.1.1. Examples. In addition to our problem in which α(·) = αMH(x; ·) is given by (20), classical

examples of (24) include the porous medium equation in which α = α1(u) = |u|um−1, with m > 1 for

slow diffusion and 0 < m < 1 for fast diffusion. The Stefan free-boundary problem has

αST (u) = u− + (u− 1)+ ,(29)

where u+ = max(u, 0) and u− = min(u, 0) are the positive and negative parts of u. The examples

αE = {0} × (−∞, 1] ∪ [0,∞)× {1} and(30)

αW = α−1
E = (−∞, 1]× {0} ∪ {1} × [0,∞)(31)
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from [50] are included below. These are the limits of the fast and slow diffusion, respectively, as m→ 0,

and m→∞.

Remark 3.1. For slow and fast diffusion α is a monotone continuous function from R onto R, but

α, β are not Lipschitz at 0 for the fast, slow diffusion cases, respectively. For the Stefan problem (29)

the graph αST is a maximal monotone Lipschitz continuous function that is affine bounded and onto R.

The graph αE in (30) and its inverse are each maximal monotone, but neither is a function. For the

methane hydrate problem the graph αMH(x; ·) given by (20) is Lipschitz continuous and monotone but

not maximal, and its range is a proper subset of R. For constant v∗ it is easily extended as a translate

of the Stefan graph (29).

Known results for (24) require that α be maximal monotone. (See [55, 57], [[51], p234].) For the

case (20) we shall extend the graph beyond the given domain to a graph that is maximal, so the well-

posedness theory may be applied. The maximum principle for (24) from [7] that shows that, with

compatible data, the solution does not go outside known bounds. Thus we can alter the definition of α

at values outside the range of values of the (bounded) solution.

Regularity results stronger than (28) are obtained in the Hilbert space setting with a subgradient

type operator (see below). In particular, the estimates of [[57], II.5.1] provide L2(Ω × (0, T )) results

for v; these require an affine growth bound on both α, β. In particular, if α is Lipschitz and monotone

then u ∈ L2(Ω× (0, T ]) [[57], II.3.1] or [[26], 5.2].

Background for abstract setting. We recall some background material to be used in Section 3.2. An

operator A on a Banach space B is a relation A ⊂ B×B with (possibly multiple) values A(x) = {y ∈ B :

〈x, y〉 ∈ A} at each x ∈ Dom(A), the domain of A. A is accretive on B if for each 〈x1, y1〉, 〈x2, y2〉 ∈ A

and ε > 0 we have ‖x1 − x2‖ ≤ ‖x1 + εy1 − (x2 + εy2)‖. It is m-accretive if also the range Rg(I +A) =

B. In a Hilbert space H with scalar product (·, ·)H , A is accretive if (y1 − y2, x1 − x2)H ≥ 0 for

〈x1, y1〉, 〈x2, y2〉 ∈ A. These are also called monotone and maximal monotone, respectively.

The following result due to T. Kato is well known for the initial-value problem (25); see Corollary

8.4 p. 228 and Thm 4.3 on p. 186, pp. 203-204 of [51].

Theorem 3.1. Assume A is m-accretive on the Hilbert space H. For each u0 ∈ Dom(A) and f ∈

W 1,1((0, T ),H), there is a unique u ∈W 1,∞((0, T ),H) which satisfies (25).

If A is a subgradient, there are additional regularity properties. Let the extended real numbers

be denoted by R∞ ≡ R ∪ {+∞}. Assume the function Ψ : H → R∞ is proper, convex and lower-

semicontinuous. Denote by f ∈ ∂Ψ(u) (equivalently, 〈u, f〉 ∈ ∂Ψ) that (f, w − u)H ≤ Ψ(w)−Ψ(u) for
9



all w ∈ H. Then the operator ∂Ψ is the subgradient of Ψ, and ∂Ψ : H → H is m-accretive. We have

the following theorem due to H. Brezis [[5], Thm 3.6].

Theorem 3.2. Assume A = ∂Ψ is a subgradient on the Hilbert space H, u0 ∈ Dom(A) and f ∈

L2((0, T ),H). Then there is a unique u ∈ C([0, T ],H) with
√
tdu

dt ∈ L
2((0, T ),H) and u(t) ∈ Dom(A)

a.e. which satisfies (25). If u0 ∈ Dom(A), then du
dt ∈ L

2([0, T ],H).

Application of abstract setting. In the Hilbert space H = V ′ denote by A = −∆ ◦ α the operator with

the domain Dom(A) = {u ∈ V ′ ∩ L1(Ω) : for some v ∈ V, v ∈ α(u)} and −∆v ∈ A(u) for all such v.

With this choice of A, the initial-boundary-value problem (24) is realized as the abstract initial-value

problem (25). Theorem 3.2 is known to apply if

α(·) is a maximal monotone graph onto R.(32)

Then the operator A described above is a subgradient in V ′ and Theorem 3.2 applies to show well-

posedness of (24). See [4, 48], and [[1], p.206] or [[51], p.142-144,203-204]. Additionally, if α satisfies

(32), and α−1(·) has affine growth, an H−1 solution is obtained in [17] even in a doubly-nonlinear case

with −∆ replaced with a general quasi-linear elliptic operator.

Remark 3.2. For the Stefan problem α is given by (29), so (32) is satisfied and in addition α is

Lipschitz continuous on R; see [[6], p35], [[32], Chapter III], [49], or [51]A.1. It is known that (24) has

a unique bounded solution with ∇v, vt ∈ L2(Ω × (0, T )). See [2, 6, 4, 10, 17, 51, 30]. Furthermore,

the continuity of v(x, t) was established in [14, 59, 9, 46, 47, 30]. If not α but α−1 satisfies (32) and is

Lipschitz, then continuity of u(x, t) follows [15, 16].

Remark 3.3. For α given in (30), in order for (32) to hold, one needs first to establish a maximum

principle to hold which allows the use of an affine-bounded modification of α onto R. Since neither α

nor α−1 is a function, no additional regularity results are available. This was demonstrated in [50], and

an exact and numerical solutions are further discussed in Section 4.

Remark 3.4. For α given by (20), the case of primary interest here, we extend the graph α to one that

is a translate of Stefan-type graph and conclude that the properties of u, v are the same as those for the

Stefan problem.

3.2. Evolution equation with a measurable family of graphs. Our primary objective here is to

extend the existence results recalled in Section 3.1 to the initial-boundary-value problem (22) with a

measurable family {α(x; ·) : x ∈ Ω} of maximal monotone relations. First we provide the construction
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of the family α(x; ·) such that for each x ∈ Ω the inverse β(x; ·) is the subgradient of a prescribed convex

function ϕ(x; ·) on R. The solution to (22) is then analyzed in that framework, and we shall need to

demonstrate that β(x; ·)−∆ is onto V ′. We close the section by formulating and proving a comparison

principle for (22).

Measurable family of convex functions. Recall that in Section 3.1 we took advantage of additional

regularity of solutions to (25) arising from the fact that A = −∆ ◦ α was a subgradient. For the more

general case that α = α(x; ·) is parametrized by x, we shall show that A is m-accretive on V ′. To do

this, we shall exploit the fact that β(x; ·) = α−1(x; ·) is a subgradient on H.

For our application, take ϕ(x; v) = 1
2v

2 + (R − v∗(x))(v − v∗(x))+. Then for each x ∈ Ω β(x; ·) =

∂ϕ(x; ·) is a maximal monotone extension of (19).

We require the construction of a normal convex integrand ϕ(x; ξ) [42, 43, 20]. Thus, we assume

• for each x ∈ Ω, the function ϕ(x; ·) : R → R∞ is proper, lower semicontinuous and convex,

• for each ξ ∈ R, the function x 7→ ϕ(x; ξ) is measurable,

• there is a countable collection B of measurable functions w : Ω → R for which x 7→ ϕ(x;w(x))

is measurable for each w ∈ B, and

• B(x) ≡ {w(x) : w ∈ B} satisfies B(x) ∩Dom(ϕ(x; ·)) is dense in Dom(ϕ(x; ·)) for each x ∈ Ω,

where Dom(ϕ(x; ·)) = {ξ ∈ R : ϕ(x; ξ) < ∞} is the effective domain. Since v∗(x) is piecewise smooth,

the function ϕ(x; ·) has these properties, and the collection B can be constructed from a class of step

functions w with rational values.

These conditions guarantee that x 7→ ϕ(x;w(x)) is measurable for each w ∈ H, not just for those

w ∈ B, so we can define the proper, lower semicontinuous and convex function Φ : H → R∞ by

(33) Φ(w) =
∫

Ω

ϕ(x;w(x)) dx, w ∈ H.

With the subgradient of ϕ(x; ·) denoted by ∂ϕ(x; ·), the subgradient of Φ(·) is given (pointwise a.e.) by

∂Φ(v)(x) = ∂ϕ(x; v(x)); that is,

u ∈ ∂Φ(v) is equivalent to u, v ∈ H, and u(x) ∈ ∂ϕ(x; v(x)) ≡ β(x; v(x)) a.e. on Ω.(34)

In fact, it is easy to check that I + ∂Φ is an extension of I + ∂φ(x; ·) and that the latter operator is

onto H, so it follows that these are equal. The inverse (∂Φ)−1 is likewise maximal monotone on H.

Abstract formulation with ∂Φ. The initial-boundary-value problem (22) will be formulated as (25) in

V ′. Define the operator A on V ′ by A(u) = {−∆v : v ∈ V, u ∈ H, u ∈ ∂Φ(v)} on the domain
11



Dom(A) = {u ∈ H : u ∈ ∂Φ(v) for some v ∈ V}. To see that A is accretive on the Hilbert space V ′, we

use (23) to compute for 〈uj ,−∆vj〉 ∈ A, j = 1, 2,

(u1 − u2,−∆(v1 − v2))V′ = (u1 − u2, v1 − v2)H ≥ 0

since ∂Φ is monotone. To verify that the operator is m-accretive, we need to solve the problem

(35) u ∈ H, v ∈ V : u−∆v = f, u ∈ ∂Φ(v),

for each f ∈ V ′. The solution is characterized by

(36) v ∈ V : f(w − v) ≤ Φ(w)− Φ(v)−∆v(w − v) for all w ∈ V,

with additionally u ∈ H. This is resolved by standard results for monotone operators ([8, 34] or see

[[51], Theorem II.7.1]), and then the affine bound

(37) |η| ≤ a|ξ|+ b for all η ∈ β(x; ξ), x ∈ Ω, ξ ∈ R,

together with the a-priori estimate ‖v‖V ≤ C‖f‖V′ from (36) imply that u ∈ H.

Remark 3.5. Here we have used the estimates from the elliptic operator −∆ to solve the resolvent

equation. In the case of a single α = (∂ϕ)−1, to show that −∆ ◦ α is a subgradient on V ′ one uses a

coercivity estimate on the conjugate convex function ϕ∗, hence, α = ∂ϕ∗ is necessarily onto.

The preceding construction permits the application of Theorem 3.1 to obtain the the following result.

Theorem 3.3. Assume Φ : H → R∞ is given by (33) as a normal convex integrand, and assume the

subgradients β(x; ξ) = ∂ϕ(x; ξ) satisfy (37). Let f ∈W 1,1((0, T ),V ′) and u0 ∈ ∂Φ(v0) for some v0 ∈ V.

Then there is a unique pair u ∈W 1,∞((0, T ),V ′), v ∈ L∞((0, T ),V) which satisfies

du
dt −∆v(t) = f(t) in V ′ for a.e. t ∈ (0, T ),(38a)

u(t) ∈ ∂Φ(v(t)) in H, v(t) ∈ V for all t ∈ (0, T ),(38b)

u(·, 0) = u0(·) on Ω.(38c)

This is the weak solution of the initial-boundary-value problem (22).
12



Comparison principle. Here we establish a result which is the counterpart of the maximum principle

quoted in Section 3.1 for the Stefan problem. For j = 1, 2 let

(39) uj −∆vj = fj in L1(Ω), vj ∈W 1,1
0 (Ω), vj(x) ∈ α(x;uj(x)) a.e. in Ω.

The approximate Heaviside function is given by Hε(v) = 0 for x ≤ 0, x
ε for 0 ≤ x ≤ ε, and 1 for ε ≤ x;

its limit is H0(v) = 0 for x ≤ 0 and 1 for 0 < x. The corresponding maximal monotone graph is the

extension H(·) with H(0) = [0, 1]. We approximate (39) by replacing β(x; ·) = α(x; ·)−1 by its Yosida

approximation, βλ(x; ·), λ > 0. Then αλ(x; ξ) = β−1
λ (x; ξ) = α(x; ξ) + λξ is strictly increasing. The

corresponding approximating problems are

(40) uλ
j −∆vλ

j = fj in L1(Ω), vλ
j ∈W

1,1
0 (Ω), vλ

j (x) ∈ αλ(x;uλ
j (x)) a.e. in Ω.

We define σε = Hε(vλ
1 − vλ

2 ); since αλ(x; ·) is strictly increasing, the limit as ε→ 0 satisfies

(41) σε → H0(vλ
1 − vλ

2 ) ∈ H(uλ
1 − uλ

2 ).

Subtract the equations (40) for j = 1, 2, multiply by σε, integrate over Ω and compute

−
∫

Ω

∆(vλ
1 − vλ

2 )σε(x) dx =
∫

Ω

|∇(vλ
1 − vλ

2 )|2H ′
ε(v

λ
1 − vλ

2 )dx ≥ 0,

so dropping this term and taking limits as ε→ 0 yield∫
Ω

(uλ
1 − uλ

2 )H0(vλ
1 − vλ

2 ) dx ≤
∫

Ω

(f1 − f2)+ dx,

where w+ = wH0(w) = max{w, 0} denotes the positive part of w. Using (41), we obtain

(42) ‖(uλ
1 − uλ

2 )+‖L1(Ω) ≤ ‖(f1 − f2)+‖L1(Ω),

and letting λ→ 0 implies uλ
j → uj for j = 1, 2. This follows even in this x-parametrized case β(x; ·) by

the proof in [7]; see also the proof of Lemma 4.2. We obtain the following.

Lemma 3.1. Assume u1, u2 are solutions of (39). Then

(43) ‖(u1 − u2)+‖L1(Ω) ≤ ‖(f1 − f2)+‖L1(Ω).

Consequently, if f1 ≤ f2, then u1 ≤ u2.

With a variation of this argument, we obtain an L∞ bound on solutions of (39) for the methane

hydrate example (20) when the constraint is subharmonic: we assume −∆v∗ ≥ 0. Set u2(x) = R and
13



vλ
2 (x) = v∗λ(x) = αλ

MH(x;R). Note that the boundary trace vλ
2 |∂Ω is positive. Define fλ

2 = R −∆v∗λ =

u2 −∆vλ
2 . Let

uλ −∆vλ = f ≤ R in L1(Ω), vλ(x) = αλ
MH(x;uλ(x)) in W 1,1

0 (Ω).

Then uλ − u2 −∆(vλ − vλ
2 ) = f − fλ

2 = ∆v∗λ ≤ 0. Multiply this by Hε(vλ − vλ
2 ) and integrate. Since

vλ− vλ
2 is negative on the boundary, Hε(vλ− vλ

2 ) vanishes there. The same calculations leading to (42)

yield here ‖(u− u2)+‖L1(Ω) ≤ 0, so we obtain u ≤ R.

Corollary 3.1. Assume the constraint satisfies −∆v∗ ≥ 0. Let u be the solution of

u−∆v = f in L1(Ω), v = αMH(·;u) in W 1,1
0 (Ω).

If 0 ≤ f(x) ≤ R a.e. in Ω, then 0 ≤ u(x) ≤ R a.e. in Ω.

The lower bound follows directly from Lemma 3.1 since αMH(·; 0) = 0.

Now for two solutions uj(t), vj(t) to the evolution problem (38) we are back to solving the implicit-

in-time problems

un
j − un−1

j

tn − tn−1
−∆vn

j = fn
j , v

n
j ∈ α(x;un

j ) ,(44)

where j = 1, 2, u0
j = uj(0), and the solutions of these stationary problems are in L1(Ω). The estimate

(43) carries over to the limit uj(t) of the time-discrete un
j and we have

(45) ‖(u1(t)− u2(t))+‖L1(Ω) ≤ ‖(u1(0)− u2(0))+‖L1(Ω) +
∫ t

0

‖(f1(s)− f2(s))+‖L1(Ω)ds.

The reasoning here follows along the usual path, see, e.g., [[51], p221].

As before, for the methane hydrate example (20) with a subharmonic constraint, we can use the

constant solution u2(t) = R ≥ 0 to bound a solution u(t) of the initial-boundary-value problem (22).

Using v2(t) = v∗ = α(x;R) and f2(t) = −∆v∗, we obtain the following.

Corollary 3.2. If u(t), v(t) is a solution of (22) with 0 ≤ u(0) ≤ R and 0 ≤ f(t) ≤ −∆v∗, then we

have 0 ≤ u(t) ≤ R.

Remark 3.6. The comparison principle lets us extend the graph β as before, so the results for Stefan

problem apply. It also lets us formulate existence/uniqueness for the L1 notion of solutions extending

(27) for the case α = α(x; ·).
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4. Numerical approximation

In this Section we discuss the numerical formulation to (4) with no sources. We are interested

primarily in the situation when β and α are parameter-dependent graphs, so we generalize the results

known for (2) and in particular for the Stefan problem with α = αST . We review the latter in Section 4.1.

For discretization of a general monotone evolution equation (2) two interrelated difficulties arise. The

first is the (in)sufficient regularity of solutions which prevents establishing an optimal convergence order.

The second difficulty is with solving the nonlinear algebraic problem resulting from the discretization.

For implicit schemes, Newton-type solvers have difficulties near singularities, and are not even defined

for multivalued operators. On the other hand, relaxation solvers apply easily but require the number

of iterations to be proportional to the number of degrees of freedom.

In Section 4.2 we propose a scheme for (4) which does not require regularization, is fully implicit,

and can be applied when neither α nor β are functions as well as when they are parametrized by x as

in (4). We propose a solver from a class of semi-smooth Newton methods [54]; these were only recently

proposed for applications similar to the ones considered here [29, 23, 25], and they converge in just a

few iterations. We discuss the main ideas behind the semismooth solver in Section 4.3 and show how

to use it for graphs from Section 3.1.1, and in particular, for the Stefan problem. Numerical results are

presented in Section 5.

4.1. Numerical schemes for (2). The literature on numerical discretization of (2) and in particular

for the Stefan problem is extensive, and we do not attempt a detailed review. Rather, we recall the

known solver and convergence issues. We first discuss semidiscrete approximations in time, then fully

discrete schemes. For simplicity, we assume here uniform time-stepping with time step τ , thus tn = nτ .

4.1.1. Semidiscrete discretization for (2). A convenient way to define and analyze discrete schemes for

(25) is via semigroup theory. If A is given as in (26), it is known that −A is the generator of a nonlinear

semigroup of contractions {SA(t) : t ≥ 0} on L1(Ω), and the solution u(t) of the initial-value problem

is obtained as the limit of the implicit finite-difference scheme (cf. (44))

(46)
un+1 − un

τ
−∆α(un+1) = 0.

The semigroup is given by SA(t)u0 = limn→∞(I + t
nA)−nu0. The numerical analysis of optimal conver-

gence rates for the fully discrete problem based on the implicit scheme (46) was given in [44, 45]. This

set of results does not require regularization.
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Semi-implicit schemes analyzed in [3, 56] take advantage of the linear factor −∆ of the operator A

when α(·) is a Lipschitz function. In particular, the approximation of −∆ by its generated semigroup

{S−∆(t)}, gives the scheme

(47)
un+1 − un

τ
+

1
τ

(I − S−∆(τ))α(un) = 0,

which can be implemented using Euler’s, Crank-Nicolson etc.; see [[3], eq.(9b)] or [[56], eq.(14)] for early

solution to the Stefan problem. Another scheme takes the form

(48)
un+1 − un

τ
+

1
τ

(I − (I − τ∆)−1)α(un) = 0,

in which Yosida’s approximation has been used for the linear −∆. This scheme is also explicit in the

nonlinear term but relies on an approximate solver for the linear elliptic resolvent (I− τ∆)−1). See [[3],

(eq.19)] or [[56], (eq.26)]. The semi-implicit schemes (47)-(48) can be analyzed using Chernoff formulae

for the nonlinear semigroup. When combined with spatial discretization, they require that stability

restrictions on the time step must be met. Below we only consider fully implicit schemes for (4).

4.1.2. Fully discrete implicit schemes for (2). The schemes combining (46) with finite element dis-

cretizations in space have been defined for various degenerate and singular parabolic problems; see

overview of applications in [38, 19]. Consider the usual finite element space Vh ⊂ V spanned by piece-

wise linears over a triangulation of Ω [12] and an associated interpolant Ih with range in Vh. The scheme

involves the solutions in vn
h ∈ Vh at each discrete time step tn, n > 0 of

(un
h, ψ) + τ(∇vn

h ,∇ψ) = (un−1, ψ), ∀ψ ∈ Vh ,(49a)

un
h ∈ βh(vn

h) ,(49b)

(u0
h, ψ) := (u0, ψ) ,(49c)

where the crucial definition of un
h, βh is made clear below.

We recall briefly the numerical analyses of (49) in which β is multi-valued such as in the Stefan

problem. We are mostly interested in the convergence results in L2(Q) which are the easiest to verify.

Here and below we denote Q = Ω × (0, T ). A quasi-norm convergence quantity q to be defined later

is considered, e.g., in [19]. Convergence results in other norms such as L∞((0, T ),V ′) are also known

from the literature but will not be used here.

The numerical solution of permafrost thawing described in [58] inspired theoretical analyses in [27]

and a discussion of the Newton method in [28]. In [58] β is actually a continuous globally Lipschitz
16



function u = β(v) = v+LHp(v) whereHp(v) ∼ ( a
a−v )4, and a is a parameter determined experimentally.

However, the results in [27] and [28] are derived for the singular Stefan problem where u = β(v) =

v+LH(v). For the Stefan problem and β−1 = αST , an extensive collection of results in [21, 56, 27, 28,

37, 38, 35, 36, 45] have been developed, and they cover the convergence of the algorithms, the use of

numerical integration, solver issues, and adaptive gridding.

The convergence analysis in most of the papers assumes α is Lipschitz and takes advantage of

regularizations βε of β, see [27, 37, 38], and (under possibly additional assumptions) shows that the error

in v is O(h) if only τ and the regularization parameter are selected appropriately. Part of the analysis

is devoted to accounting for inconsistency between the solutions (uε, vε) of the regularized problem and

(u, v) solving (2). As ε → 0, the inconsistency gets smaller; however, the constants in approximations

blow up, and thus one has to adjust ε to h. Since βh = βε is a function, the choice in (49b) is

unambiguous by defining un
h as the finite element interpolant Ihβε(vn

h), i.e., uj = uh(xj) = βε(vh(xj))

at all nodal points xj of the finite element grid; see, e.g., [[38], p792]. The regularizations are also used

in implementation; most use a nonlinear relaxation iterative solver analyzed in [21, 36].

Analysis without regularization is discussed in [45] and some theoretical results proven in [27] are

extendable to the non-regularized version; see also the stationary problem discussed in [21] for which

some (sub)optimal results were derived. Here the selection out of β(vh(xj)) is, in general, not unique,

unless one makes precise how (49) is solved. A duality argument employed in [[45], Lemma 2.4] shows

uniqueness of the pair 〈un
h, v

n
h〉 with un

h identified as the (unique) H-projection onto Vh of an element

out of β(vh(xj)). Thereby βh has a unique meaning.

In summary, theoretical and practical results in [37, 27] suggest that the best convergence orders are

close to O(h) and O(h
1
2 ) in L2(Q) for v and u, respectively. These were demonstrated for Lipschitz α,

smooth initial data, and for regularized schemes, with τ = O(hr), and r chosen to be 2
3 if additional

properties can be assumed, or larger without it. These rates were confirmed to hold for the Stefan

problem in [38].

4.2. Fully discrete scheme for (4). For graphs such as (30) or parameter-dependent families (20) no

results are available in the literature. However, a scheme can be readily defined to extend (49). The

first equation (49a) is unchanged; we rewrite it in a matrix-vector form whereby vn
h ≈ vn ∈ RM are

identified by its degrees of freedom (v1, . . . vM ). Let M and K be the usual mass and stiffness matrices

defined by (uh, wh) = wT Mu and (∇uh,∇wh) = wT Ku for any uh, wh ∈ Vh, and thus (49a) can be

written as Mun + τKvn = Mun−1. Instead of the L2(Ω) inner products (w,ψ) in (49a), one can use
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their approximations (w,ψ)h via numerical integration, i.e., mass lumping (see [38]). In that case, in

1D on a uniform grid, M is replaced by hI. Its special structure is exploited below.

In summary, our discrete problem is

un + τAhvn = un−1(50a)

where Ah is M−1K. Note that Ah is symmetric and positive definite. It remains to identify βh as in

(49b). It is natural to use the pointwise selection

〈vn
j , u

n
j 〉 ∈ β(xj ; ·) := βj(·).(50b)

When complemented by initial selection such as (49c), the discrete scheme is complete.

Now we show that the scheme (50) is uniquely solvable, at least for all the examples from Section 3.1.1.

This follows from an argument similar to that used to establish the range condition in (34). For a

closed convex set K, the convex lower semicontinuous indicator function IK(x) is 0 for x ∈ K and +∞

otherwise.

Lemma 4.1. For every n > 0 there is a unique solution in vn ∈ RM of (50) for β = βMH ; it is the

unique minimizer of the appropriate functional Ψ(v) for which (50) is the Euler-Lagrange condition.

Proof. Consider the problem solved at every time step for u = un and v = vn

u + τAhv = f , uj ∈ βj(vj), j = 1, 2, ...,M.(51)

For β = βMH(x; ·) in (20) we must define Ψ(v) = ΨMH(v). Consider pointwise-defined convex functions

ϕj(λ) = 1
2λ

2 + I(−∞,v∗(xj)](λ) and Φ(v) :=
∑

j ϕj(vj). Now β(xj , ·) = ∂Φ. Since Ahv defined on all of

RM is single-valued, thus maximal, we also have, by [[51], Prop. II.7.7] that the subgradient ∂Ψ(v) of

Ψ(v) = 1
2τvAhvT + Φ(v) is equal to τAhv + ∂Φ(v), and this completes the proof. �

From the proof of Lemma 4.1, it is clear how to show solvability also for β = βE and βW : this follows

by defining appropriate convex functions ϕE = I(−∞,1) and ϕW (x) = x+ I[0,∞), respectively. For βST ,

the construction used to establish Lemma 4.1 is that of [[21], 1.8,2.2,3.4] with ϕST (λ) = 1
2λ

2 + λ+.

We summarize the results in the Corollary.

Corollary 4.1. The scheme (50) is uniquely solvable for each of β = βMH(x, ), βST , βE , βW .

Remark 4.1. Convergence of the solutions to (50) has been rigorously established in the literature only

for the Stefan problem. It is easy to see that these can be extended to βMH when v∗ ≡ const as long as
18



an appropriate comparison principle lets us extend that graph to one that is affine bounded so that the

theory in [38] applies. The general case of nonconstant v∗ requires more work and will be considered

elsewhere.

We now prove the comparison principle for the simplified case of d = 1 with mass lumping and

uniform grid. The proof is different from that for Lemma 3.1 because it does not require approximation

Hε to the Heavisde function H.

Lemma 4.2. Consider the case of (50) for which Ah is the usual tridiagonal discrete Laplacian scaled

by 1
h2 . Let solutions u(1),u(2) with the corresponding v(1),v(2) satisfy (51) for f = f (1), f (2), respectively.

Let also v(1)
j − v

(2)
j = 0 for boundary indices j. Then the counterpart of (43) holds, namely,

M∑
j=1

(u(1) − u(2))+ ≤
M∑

j=1

(f (1) − f (2))+ .(52)

Proof. In the case considered we solve (51) for vectors u = (u1, . . . uM ),v = (v1, . . . vM ) with v0, vM+1

set from boundary conditions. Denote Dj+1v = τ
vj+1 − vj

h2
. From (51) we have, for j = 1, . . .M ,

uj + (Djv −Dj+1v) = fj , uj ∈ βj(vj),

Subtracting this identity written for u(m),v(m) for m = 1, 2, setting w = v(1) − v(2), multiplying both

sides by H(wj), and summing we obtain

∑
j

H(wj)(u
(1)
j − u

(2)
j ) +

∑
j

H(wj)(Djw −Dj+1w) =
∑

j

H(wj)(f
(1)
j − f

(2)
j ).(53)

Since H(wj) ∈ [0, 1], thus H(wj)(f
(1)
j −f (2)

j ) ≤ (f (1)
j −f (2)

j )+, and so the right side of (53) is bounded

by that of (52).

Next, by summation by parts we calculate

M∑
j=1

H(wj)(Djw −Dj+1w)

=
τ

h2

H(w1)(w1 − w0) +H(wM )(wM − wM+1) +
M∑

j=2

(H(wj)−H(wj−1))(wj − wj−1)

 .

Since H is monotone, every component of the sum in the last term is nonnegative, and so are the

terms H(wj)wj , j = 1,M . Now, if v(m) both satisfy the same boundary conditions, and in particular

if v(m)
j = 0 for j = 0,M + 1, then the entire sum is nonnegative, so the second part of the left side of

(53) is nonnegative.
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It remains to deal with the first term in (53). If βj is single valued, pointwise we have H(wj)(u
(1)
j −

u
(2)
j ) = H(v(1)

j − v
(2)
j )(u(1)

j − u
(2)
j ) = (u(1)

j − u
(2)
j )+. In the multivalued case, we proceed by using its

single-valued Yosida regularization βλ
j defining the corresponding families uλ,vλ,wλ and proving the

result for these. Passing to the limit with λ → 0 as in [7], see also [[51], Thm II.9.2], we obtain the

desired result. �

Remark 4.2. Note that our proof of Lemmas 4.1,4.2 did not require that either α or β be single-valued,

thus they apply to all Examples from Section 3.1.1.

As for solving the algebraic problem (50), an (iterative) relaxation solver is proven to converge

linearly in [21]. However, as shown, e.g., in [36], it requires the number of iterations proportional to the

number of degrees of freedom. In contrast, semismooth Newton methods converge superlinearly and

generally require only a few iterations. This is discussed in the sequel.

4.3. Semismooth solver. To solve (50) with semismooth Newton methods, the main idea is to use not

just one but a double set of degrees of freedom corresponding to the two unknowns u,v simultaneously,

and to replace (50b) by (5). If the graph β has piecewise smooth pieces, one can show that φ is

semismooth. Also, the resulting Jacobian is never singular which we can show based on monotonicity

of β, and one concludes that the semismooth Newton algorithm converges superlinearly.

For the methane hydrate application that originally motivated this paper the graph βMH can be

described in a natural way using a complementarity constraint (CC). For finite dimensional problems

with CCs it is very efficient to use a solver from the class of semismooth Newton methods [54]. We

extend this observation further and see that CC-based semismooth Newton solver can be used for any

application in which β can be expressed as a CC. In particular, the semi-smooth solver applies readily

to the Stefan problem (29), without regularization, and to the graph given by (30). We elaborate below

on the details of a CC-based solver.

4.3.1. Formulation of u ∈ β(u) as an NCC. From now on we fix n and suppress it as superscript.

It is useful [29, 54, 23] to rewrite 
λ ≥ 0, µ = 0,

λ = 0, µ ≥ 0,

µλ = 0

(54)

as φ(λ, µ) = min(λ, µ) = 0. This is advantageous when setting up the numerical solution of systems

with CC such as (54).
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More generally, let 〈u, v〉 ∈ β be represented as a NCC in the form min(F (u, v), G(u, v)) = 0, where

F,G are some smooth functions. Thus (50) is solved together as

u + τAhv = b,(55a)

min(Fj(uj , vj), Gj(uj , vj)) = 0, ∀j,(55b)

with b given from the previous time step.

We apply semismooth Newton methods to solve (55). The Jacobian J =

 J11 J12

J21 J22

 of (55) has

a block structure in which J21,J22 are diagonal. In addition, J11 = I,J12 = τAh are constant, hence

smooth in u, v but J21,J22 are only semismooth due to non-differentiability of the function min(r, s)

across the line r = s.

Let J− := {j : F (uj , vj)−G(uj , vj) < 0}, and J+, J0 are defined analogously. We see (J21(u,v))jj =

∂
∂uj

min(F (uj , vj), G(uj , vj)) is equal to ∂F
∂uj

when j ∈ J−, and to ∂G
∂uj

on J+. The set J0 on which

the min(·, ·) function is not differentiable can be lumped in implementation with J−, so that one-sided

derivative can be defined. One calculates (J22(u,v))jj analogously.

Since F,G are generally smooth, φ in (55b) is piecewise smooth, hence, semismooth [[54], Proposition

2.23, p.34]. For semismooth J it was shown in [[54], Prop. 2.12, p. 29] that Newton iteration converges

superlinearly, if only J−1(u(k),v(k)) can be shown bounded for any iterate (u(k),v(k)) (condition (i) in

[[54], Prop. 2.12]). In our examples the Jacobian is piecewise constant, and we just have to check that

it is nonsingular; this is done separately for each application.

4.3.2. Singular graph. We can write (30) in the equivalent forms

u ∈ βE(v) ⇔ φE(u, v) := min(u, 1− v) = 0.(56)

Corollary 4.2. The semismooth Newton algorithm converges superlinearly for the problem (30), for

any initial guess.

Proof. Since the functions F (u, v) = u;G(u, v) = 1 − v are smooth, we see that the Jacobian J is

constant on each J−, J+, J0. We now show it is never singular.

Notice that J21,J22 are diagonal matrices with entries (J21)jj = χJ−,0(j) and (J22)jj = −χJ+(j).

Here χS is the characteristic function of set S equal to 1 for indices in S and equal 0 otherwise. To

show J is nonsingular, we check if there are nontrivial solutions to J[u,v]T = [0, 0]T for u,v. From the

form of J21 and J22 we see that the entries u−1,0 of u must vanish on J−,0 and the entries v+ of v

vanish on J+,0. Next we seek the entries u+ and v−,0 that satisfy (Mu+)j = 0 on J+ and (Kv−,0)j
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on J−,0. Since M,K are positive definite on J = {1, . . .M}, they are positive definite on every subset

of J . Thus the only solution is trivial with u+ = 0 and v− = 0, thus J is nonsingular.

We note in passing the following about any iterate u(k−1),v(k−1). Assume the set J+ is nonempty.

Then for j ∈ J+ we have an equation defining the new iterate (J22)jj(v
(k)
j − v

(k−1)
j ) = (−1)(v(k)

j −

v
(k−1)
j ) = −(1− v

(k−1)
j ) = −φ(u(k−1)

j , v
(k−1)
j ) thus we obtain v(k)

j = 1, and these values can be used to

eliminate vj from the rows involving J11, J12. Similarly, for any j ∈ J−,0 we obtain u(k)
j = 0. �

4.3.3. The methane hydrate problem. Equivalent forms for the methane hydrate problem (20) are

u ∈ βMH(v) ⇔ φMH(u, v) ≡ min(u− v, v∗(x)− v) = 0,(57)

whereas the original constraint in (v, S) can be written as

min(v∗(x)− v, 1− S) = 0.(58)

Corollary 4.3. The semismooth Newton algorithm converges superlinearly for the problem (20) and is

equivalent to switching of variables.

Proof. The proof of nonsingularity of J is similar to that for 4.2 is immediate, where the sets J−, J0, J+

are now defined based on min(v∗(xj)− vj , 1− Sj). In particular, j ∈ J+ if v∗(xj)− vj < 1− Sj .

As for variable switching, we consider an iterate v(k−1),S(k−1). The entries of S(k) for j ∈ J−,0 are

set to Sk
j = 1 and thus one can say that the “independent variables” in these rows are vj . Analogously,

Sj are independent variables in rows corresponding to j ∈ J+. The process thus is equivalent in

implementation to that known as “variable switching” described in [22, 13]. �

In practice, merely a few iterations are needed for convergence, as will be shown in Section 5.

4.3.4. The Stefan problem using MCP. For the Stefan problem the entire graph (29) cannot be repre-

sented as a single NCC, but its pieces can. The bottom part of βST = α−1
ST in (29) can be written as

min(u − v,−v) = 0, and is similar to a translate of the graph from (57) with v∗ ≡ 0. The top part,

written as min(1 + v − u, v) = min(1− (u− v), v) = 0 is a “reflection” of the other part.

To define the entire graph βST , we use box (bilateral) constraints. Upon setting w = u − v, we see

that 〈v, w〉 ∈ H, and H is given as (6). Next we use the framework of MCP (mixed complementarity

problems) as suggested in [[54], (1.20-1.21),p8], with which (6) is expressed equivalently as

y −mST (y + x) := y −max(0,min(y + x, 1)) = 0.(59)
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(A related approach is given in [[24], p203].) Thus

u ∈ βST (v) ⇔ φST (u, v) := u− v −mST (u) = 0 .(60)

This translates easily to v = u −mST (u) = αST (u), which is the same as (29). Furthermore, φST is

semismooth, just as φE , φMH are, and the corresponding Jacobian is never singular analogously to the

case in (57).

Corollary 4.4. The semismooth Newton algorithm converges superlinearly for the problem (29).

Because of the structure of φST , there are three nontrivial sets of indices for the Stefan problem,

and the number of iterations, especially for larger time steps, slightly exceeds that for methane hydrate

problem.

5. Numerical results

Now we provide results of numerical experiments for (4) in d = 1 using the discrete scheme (50)

and semismooth Newton solver. We are interested in convergence of the algorithms as well as in the

behavior of the solver. The examples extend the results known for (2), either because α and β are

not functions, or because α is parameter-dependent. We demonstrate that the discrete algorithm (50)

works at least as well as the methods originally proposed for the Stefan problem. While we do not

attempt a direct comparison of the solvers or of convergence rate, we show that L2(Q) errors in u are

approximately of order O(h
1
2 ) while those in v are O(h).

For all examples we run experiments for Ω = (0, 1), T = 0.13 with various M = 1/h and τ which

varies as O(h) or O(h2). We use close to machine precision tolerance in the Newton solver. We report

on the convergence of the numerical solutions using Lp(Q), p = 1, 2 norms of the error in u and v, as

well as on the quasi-norm as suggested in [19] and as seen in the proof [[45], Thm 2.1]

eu,p :=

(∑
n

τ ‖ u− un
h ‖

p
Lp(Ω)

)1/p

,(61)

ev,p :=

(∑
n

τ ‖ v − vn
h ‖

p
Lp(Ω)

)1/p

,(62)

eq :=
∑

n

τ

∫
Ω

|u− un
h||v − vn

h |dx .(63)

By comparing the solutions computed for different grids we are able to determine the rate of convergence,

e.g., ru,p in eu,p = O(hru,p). We also define errors eS,p in saturations.
23



If the true solution u is not known, as in some examples below, we approximate eu,p by using

u ≈ uhmin computed on a very fine grid with hmin (and corresponding τmin) approximately smallest h

used in the tests. The same is done for v. In cases when the true solution is known, we have verified

(but do not show it here) that this method is quite accurate but slightly (less than 10%) overpredicts

ru,p as h gets closer to hmin.

In Tables below we report on the errors eu,2, ev,2, eq whose rate for rough solutions, as predicted by

the theory reviewed in Section 4.1, should be at best 1/2, 1, 1, respectively. We find that some of our

rates appear higher because some of the solutions are smoother. In addition, we report on eu,1, ev,1

which are easy to compute but are not covered by the theory. These appear to be near 1 in all cases.

In addition, we show that the average number of Newton iterations Nit for all the problems is

mesh-independent and in fact very small (in none of the cases shown did the number of iterations at

any time step exceed 13). Note that we are not using any line-search or other globalization methods

for Newton iterations. In spite of this, the problems require very few iterations to converge, which

suggests robustness of the semismooth Newton implementation. Since our time-steps are chosen with

convergence in mind and are rather small, our examples are possibly not challenging enough for the

Newton algorithm. A more extensive study is needed to fully support our current conjectures on the

superiority of semismooth-based solver over other solvers.

5.1. One-phase Stefan problem. We recall here an example with an analytical solution v(x, t) in

d = 1 from [[11], 17.3,p287] derived for the one-phase Stefan problem. Consider a parameter λ > 0

which defines the boundary condition v(0, t) = λ, t > 0 at the left end of the domain, and assume the

initial condition u(x, 0) = v(x, 0) = 0.

There is only one “phase” in the problem, and v is nonnegative everywhere, and positive only ahead

of the free boundary x = s(t), with v(s(t), t) = 0. Therefore u(x, t) = v(x, t) + 1 for x < s(t) ahead of

the free boundary, and there is a jump down to the value u(x, t) = v(x, t) for x > s(t) behind the free

boundary.

The evolution is considered for t not exceeding the time ts when the front of the free boundary

reaches x = 1, so that the right boundary condition v(1, t) = 0, t ≤ ts holds. In fact, v satisfies

vt − vxx = 0, 0 < x < s(t), 0 < t < ts(64a)

v(x, 0) = 0, 0 ≤ x, v(0, t) = λ(64b)
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Table 1. Convergence and iteration count for (64)

1/h 1/τ Nit eu,2 ru,2 eu,1 ru,1 ev,2 rv,2 ev,1 rv,1 eq rq

32 320 2 2.43e-02 2.27e-03 5.42e-03 6.32e-04 6.25e-03
64 640 2 1.69e-02 0.523 1.14e-03 0.983 3.45e-03 0.651 3.30e-04 0.936 3.81e-03 0.714
128 1280 2 1.17e-02 0.535 5.70e-04 1.011 2.10e-03 0.713 1.67e-04 0.979 2.25e-03 0.758
256 2560 2 7.91e-03 0.566 2.76e-04 1.044 1.24e-03 0.760 8.27e-05 1.020 1.31e-03 0.784
512 5120 2 5.22e-03 0.600 1.30e-04 1.082 7.06e-04 0.818 3.90e-05 1.083 7.33e-04 0.837
16 1600 2 3.22e-02 3.40e-03 5.20e-03 4.83e-04 8.51e-03
32 3200 2 2.23e-02 0.533 1.67e-03 1.024 1.92e-03 1.438 1.73e-04 1.482 4.24e-03 1.007
64 6400 2 1.55e-02 0.525 8.29e-04 1.015 8.33e-04 1.204 6.99e-05 1.308 2.17e-03 0.963
128 12800 2 1.06e-02 0.548 4.03e-04 1.041 4.23e-04 0.978 2.98e-05 1.227 1.10e-03 0.972
256 25600 2 6.98e-03 0.603 1.88e-04 1.093 2.27e-04 0.897 1.27e-05 1.225 5.55e-04 0.998

16 256 2 3.19e-02 3.72e-03 5.65e-03 7.59e-04 8.29e-03
32 1024 2 2.13e-02 0.581 1.69e-03 1.136 2.32e-03 1.282 2.47e-04 1.617 4.13e-03 1.003
64 4096 2 1.40e-02 0.609 7.72e-04 1.133 9.62e-04 1.272 8.24e-05 1.588 2.07e-03 1.000

and this case is a special case of (2) with (29). To find the free boundary, solve for c = c(λ) the identity

λ = c exp(
c2

4
)
∫ c

2

0

exp(−r2)dr.(65)

It is not hard to see that the right hand side of this identity is monotone in c thus the solution can

always be found. We find c(λ) numerically, e.g., for λ = 2 we obtain c(λ) = 1.6012. Then the free

boundary is s(t) = c
√
t, and we have

v(x, t) = λ− c exp(
c2

4
)
∫ x

2
√

t

0

exp(−r2)dr, x < s(t).(66)

For this problem we show the results of our simulations in Table 1. The computed L2 rates agree

with the theory, and they depend on the scaling between h and τ , while L1 rates are generally higher.

5.2. Singular graph with an analytical solution. Here we recall the example (30) from [50] in which

neither the maximal monotone graph α nor its inverse is continuous, but both are affine-bounded. Here

we can extend (30) to α(0) = [0, 1], α(x) = {1} for 0 < x ≤ 1, and α(x) = x for x /∈ [0, 1].

Define a pair of functions, u, v as follows. Set u(x, t) = 1 for 0 ≤ t < 1/8,
√

2t < x < 1 −
√

2t,

and u(x, t) = 0 otherwise. Let v(t) ∈ H1
0 (0, 1) be given by v(x, t) = min{x/

√
2t, 1, (1 − x)/

√
2t}

for 0 < x < 1, 0 < t < 1/8, and v(x, t) = 0 otherwise. These functions are the solution of the

initial-boundary-value problem

ut − vxx = 0, v ∈ αE(u),(67a)

v(·, t) ∈ H1
0 (0, 1) for t > 0, u(x, 0) = 1.(67b)

That is they are solutions according to both (27) and (28), but neither is continuous on (0, 1)× (0,∞).

Note that this example is not covered by the theory of convergence from [45] since α is not a

function. Still, we observe in Table 2 that the convergence rates are similar as for (64) in u, but with

no superconvergence for v.
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Table 2. Convergence and iteration count for (67)

1/h 1/τ Nit eu,2 ru,2 eu,1 ru,1 ev,2 rv,2 ev,1 rv,1 eq rq

32 320 2 3.04e-02 2.92e-03 5.88e-03 8.79e-04 4.78e-03
64 640 2 2.14e-02 0.502 1.49e-03 0.973 3.51e-03 0.743 4.82e-04 0.867 2.57e-03 0.893
128 1280 2 1.50e-02 0.515 7.42e-04 1.006 2.05e-03 0.771 2.42e-04 0.993 1.34e-03 0.934
256 2560 2 1.03e-02 0.540 3.61e-04 1.038 1.19e-03 0.785 1.16e-04 1.057 6.40e-04 1.073
512 5120 2 6.81e-03 0.601 1.70e-04 1.089 6.73e-04 0.828 5.72e-05 1.026 3.00e-04 1.094
16 1600 2 4.33e-02 5.84e-03 9.44e-03 1.88e-03 1.16e-02
32 3200 2 3.06e-02 0.498 2.98e-03 0.969 4.77e-03 0.986 9.40e-04 1.001 5.93e-03 0.971
64 6400 2 2.15e-02 0.513 1.49e-03 0.997 2.39e-03 0.993 4.71e-04 0.999 2.99e-03 0.987
128 12800 2 1.47e-02 0.546 7.28e-04 1.037 1.23e-03 0.966 2.35e-04 1.001 1.48e-03 1.016
256 25600 2 9.69e-03 0.602 3.42e-04 1.089 6.29e-04 0.961 1.17e-04 1.002 7.19e-04 1.040

16 256 2 4.15e-02 5.43e-03 1.01e-02 1.90e-03 9.44e-03
32 1024 2 2.90e-02 0.516 2.80e-03 0.953 5.25e-03 0.945 9.94e-04 0.936 5.42e-03 0.800
64 4096 2 1.93e-02 0.591 1.35e-03 1.058 2.62e-03 1.003 4.88e-04 1.026 2.78e-03 0.964

5.3. Singular graph with a constant solution. In this example we use α − αW given by (31)

extended as in previous section by α(x) = x for x /∈ [0, 1]. It is straightforward to check that the

constant solution u ≡ 1/2, v ≡ 0 satisfies

ut − vxx = 0, v ∈ αW (u),(68a)

v(·, t) ∈ H1
0 (0, 1) for t > 0, u(x, 0) = 1/2.(68b)

Notice that βW = α−1
W = αE represents the upper part of Heaviside graph; this example was used in

[[28], p863] to demonstrate the need for line searching in a regular Newton algorithm, without which

the authors suggest the algorithm would not converge if given an positive initial guess fror v.

With semismooth Newton algorithm and φW (u, v) = min(1 − u, v) we find that the algorithm con-

verges after 2 iterations to the true solution, and line search is not needed.

Since the numerical solution trivially matches the analytical (constant) solution, we do not report

on the errors.

5.4. Methane hydrates problem. If v∗ = const, then the graph αMH is a translate of (a one-phase

portion of) αST and thus we expect the results to be not worse than those in Section 5.1 in u, v variables.

For an extension, we consider the case when αMH depends on xj , and solve

ut − vxx = 0, v ∈ αMH(x;u),(69a)

v(·, t) ∈ H1
0 (0, 1) for t > 0, u(x, 0) ≡ const = η = 1.2.(69b)

Here η exceeds a given maximum solubility v∗, and the unknowns evolve depending on that amount

and on v∗. We consider three cases of a constant v∗ = v∗c , an affine v∗ = v∗a, and non-affine v∗ = v∗n,
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Table 3. Convergence and iteration count for (69) for boundary condition cases: (a)
constant, (b) affine, and (c) non-affine.

(a)
1/h 1/τ Nit eu,2 ru,2 eu,1 ru,1 ev,2 rv,2 ev,1 rv,1 eq rq

32 320 2 6.84e-03 9.58e-04 3.71e-03 6.31e-04 3.84e-03
64 640 2 4.74e-03 0.530 5.05e-04 0.925 2.36e-03 0.654 3.36e-04 0.910 2.41e-03 0.672
128 1280 2 3.15e-03 0.586 2.57e-04 0.972 1.44e-03 0.713 1.73e-04 0.961 1.47e-03 0.717
256 2560 2 2.14e-03 0.560 1.28e-04 1.005 8.50e-04 0.760 8.55e-05 1.014 8.62e-04 0.768
512 5120 2 1.39e-03 0.623 6.04e-05 1.086 4.86e-04 0.806 4.05e-05 1.077 4.92e-04 0.810
16 1600 2 6.53e-03 7.15e-04 2.31e-03 2.85e-04 2.76e-03
32 3200 2 4.28e-03 0.610 3.25e-04 1.138 7.12e-04 1.697 8.15e-05 1.807 1.17e-03 1.239
64 6400 2 2.93e-03 0.547 1.62e-04 1.009 3.48e-04 1.029 3.45e-05 1.239 6.03e-04 0.955
128 12800 2 1.98e-03 0.559 8.04e-05 1.005 2.17e-04 0.682 1.74e-05 0.986 3.33e-04 0.855
256 25600 2 1.31e-03 0.603 3.85e-05 1.063 1.31e-04 0.725 8.52e-06 1.033 1.81e-04 0.883

16 256 2 7.83e-03 1.15e-03 3.44e-03 6.38e-04 3.79e-03
32 1024 2 4.39e-03 0.833 4.24e-04 1.436 1.31e-03 1.396 1.82e-04 1.811 1.55e-03 1.287
64 4096 2 2.69e-03 0.705 1.67e-04 1.343 4.88e-04 1.421 5.10e-05 1.834 6.57e-04 1.239

(b)
1/h 1/τ Nit eu,2 ru,2 eu,1 ru,1 ev,2 rv,2 ev,1 rv,1 eq rq

32 320 2 1.58e-02 1.83e-03 2.98e-03 4.56e-04 3.57e-03
64 640 2 1.10e-02 0.515 9.46e-04 0.955 1.88e-03 0.665 2.39e-04 0.928 2.15e-03 0.729
128 1280 2 7.64e-03 0.529 4.75e-04 0.994 1.14e-03 0.718 1.22e-04 0.976 1.26e-03 0.768
256 2560 2 5.22e-03 0.551 2.33e-04 1.027 6.74e-04 0.762 6.00e-05 1.021 7.27e-04 0.798
512 5120 2 3.44e-03 0.602 1.09e-04 1.090 3.84e-04 0.810 2.83e-05 1.083 4.07e-04 0.838
16 1600 2 2.19e-02 2.95e-03 3.06e-03 4.29e-04 5.29e-03
32 3200 2 1.48e-02 0.564 1.46e-03 1.016 1.17e-03 1.383 1.53e-04 1.488 2.68e-03 0.980
64 6400 2 1.04e-02 0.518 7.27e-04 1.003 5.08e-04 1.208 5.91e-05 1.371 1.37e-03 0.964
128 12800 2 7.11e-03 0.545 3.54e-04 1.039 2.47e-04 1.039 2.40e-05 1.297 6.94e-04 0.986
256 25600 2 4.69e-03 0.601 1.66e-04 1.090 1.29e-04 0.941 1.00e-05 1.263 3.45e-04 1.010

16 256 2 2.19e-02 3.16e-03 3.12e-03 5.72e-04 4.95e-03
32 1024 2 1.43e-02 0.622 1.46e-03 1.113 1.30e-03 1.262 1.95e-04 1.552 2.57e-03 0.942
64 4096 2 9.35e-03 0.612 6.72e-04 1.120 5.52e-04 1.236 6.65e-05 1.552 1.29e-03 0.997

(c)
1/h 1/τ Nit eu,2 ru,2 eu,1 ru,1 ev,2 rv,2 ev,1 rv,1 eq rq

32 320 2 1.07e-02 1.22e-03 2.9e-03 4.75e-04 3.34e-03
64 640 2 7.40e-03 0.533 6.33e-04 0.949 1.89e-03 0.656 2.53e-04 0.910 2.05e-03 0.706
128 1280 2 5.09e-03 0.539 3.19e-04 0.988 1.15e-03 0.717 1.29e-04 0.965 1.22e-03 0.751
256 2560 2 3.45e-03 0.561 1.56e-04 1.028 6.77e-04 0.763 6.40e-05 1.014 7.07e-04 0.785
512 5120 2 2.27e-03 0.605 7.39e-05 1.084 3.86e-04 0.811 3.03e-05 1.080 3.98e-04 0.827
16 1600 2 1.39e-02 1.61e-03 2.73e-03 3.57e-04 4.18e-03
32 3200 2 9.50e-03 0.555 7.85e-04 1.040 1.00e-03 1.445 1.15e-04 1.635 2.04e-03 1.034
64 6400 2 6.61e-03 0.524 3.88e-04 1.016 4.35e-04 1.205 4.36e-05 1.400 1.04e-03 0.969
128 12800 2 4.50e-03 0.554 1.88e-04 1.043 2.19e-04 0.990 1.86e-05 1.228 5.33e-04 0.967
256 25600 2 2.96e-03 0.604 8.88e-05 1.087 1.19e-04 0.875 8.26e-06 1.172 2.68e-04 0.995

16 256 2 1.43e-02 1.86e-03 2.97e-03 5.30e-04 3.99e-03
32 1024 2 9.18e-03 0.636 8.21e-04 1.182 1.18e-03 1.330 1.65e-04 1.684 1.98e-03 1.013
64 4096 2 5.98e-03 0.619 3.67e-04 1.160 4.86e-04 1.280 5.24e-05 1.655 9.88e-04 1.000

each satisfying v∗(1) = 1:

v∗c (x) = 1,(70)

v∗a(x) = (1 + x)/2,(71)

v∗n(x) = (1 + 2x− x2)/2.(72)

For these cases the convergence results are given in Table 3. The computed rates agree with the theory

and are similar to those for Stefan problem. Additionally, the errors and convergence rates for the

saturations S presented in Table 4 are similar to those for u.
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Table 4. Convergence of saturations for (69) for boundary condition cases: constant,
affine, and non-affine. In each case 1/τ = 100/h.

constant affine non-affine
1/h es,2 rs,2 es,1 rs,1 es,2 rs,2 es,1 rs,1 es,2 rs,2 es,1 rs,1
16 6.16e-03 5.21e-04 1.67e-02 2.09e-03 1.11e-02 1.16e-03
32 4.23e-03 0.542 2.65e-04 0.977 1.13e-02 0.563 1.04e-03 1.004 7.58e-03 0.546 5.82e-04 0.998
64 2.91e-03 0.537 1.32e-04 1.001 7.89e-03 0.519 5.24e-04 0.994 5.27e-03 0.525 2.91e-04 1.001
128 1.97e-03 0.559 6.43e-05 1.039 5.41e-03 0.546 2.56e-04 1.032 3.58e-03 0.556 1.41e-04 1.041
256 1.30e-03 0.602 3.03e-05 1.084 3.56e-03 0.600 1.21e-04 1.084 2.36e-03 0.603 6.66e-05 1.086

6. Conclusions

In this paper we analyzed a model and proposed a numerical scheme for evolution of methane

hydrates. In addition, we considered other models of similar structure which include set–valued nonlin-

earities such as the Stefan problem. On one hand, we showed that one can extend monotone operator

theory to cover the case when the graphs are parameter-dependent families such as in the underlying

hydrate problem. On the other hand, we showed an efficient numerical solver for models with multi-

valued graphs using complementarity constraints and semismooth Newton methods. Both directions

are important for future theoretical and applied developments. In particular, some work is underway on

rigorous convergence estimates developed for general non-Lipschitz and parameter-dependent families

of graphs α.
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28
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