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Abstract. An analysis of an integro–differential equation with a convolution
term is given. Such equations arise in modelling of flows through fissured me-
dia, and these integral terms account for fading memory effects exhibited by
the flow. We propose a convergent semi–discrete approximation of the convo-
lution term with a possibly singular kernel. The approximation scheme leads
to the existence/uniqueness result for the problem and has strongly favorable
numerical aspects.

1. Introduction

Models of microstructure phenomena have recently attracted much interest. This
is related to the appearance of new techniques of modelling like homogenization
methods (see [5, 17]) and new achievements in numerical methods, especially recent
developments in parallel computing. The models of flows through fissured media
are examples of microstructure models which require nonstandard techniques for
their analysis and approximation.

Fissured media are porous media of hierarchical geometrical structure. Below
we are concerned with a model of flow through fissured medium proposed and
analysed by Hornung and Showalter in [9], see also [3], which is derived by homog-
enization and takes into account the fading memory effects exhibited by the flow.
The equation we deal with has the form

ut(x, t) +

∫ t

0

ut(x, s)τ(t − s)ds −∇ · (D∇u(x, t)) = f(x, t), (x, t) ∈ Ω × I(1)

u(x, t) = 0, (x, t) ∈ ∂Ω × I (2)

u(x, 0) = u0(x), x ∈ Ω (3)

where an open bounded set Ω ⊂ Rd, d = 2 or d = 3, with boundary ∂Ω is the
domain of the flow. I = (0, T ), T > 0 is the time interval, and D is the coefficient
tensor (possibly dependent on space variable). The convolution kernel τ(·) is related
to the microscopic properties of the domain of the flow and is by definition (see
[9, 15]) singular at t = 0 but L1 integrable. For example, for some particular
microscopic geometric structure of the medium the convolution kernel is given by

τ(t) = c0

∞
∑

k=1

e−c1k2t
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where the coefficients c0, c1 depend on the properties of the medium (see [15]).
We note that in the case τ ≡ 0 the equation ( 1 ) reduces to the standard

linear diffusion equation. The same reduction is valid if τ is given as the Dirac
measure concentrated at t = 0. Both of these trivial cases describe diffusion with
the postulated instantaneous propagation of changes in the values of variables.
The nature of the flow in fissured media requires τ 6≡ 0, τ 6≡ δ i.e. the presence of
nontrivial memory terms in the model. In the case considered in this paper those
memory terms admit the convolution representation with kernels unbounded at
the origin. It has been observed that the models with memory terms with bounded
kernels lead to a less accurate description of the dynamics of the flow than is the case
treated in this paper, i.e., the case of singular kernels (see [9, 8]). We mention also
the work of Arbogast and Douglas in [1, 2] who use a different modelling approach
in order to describe the memory effects. Their work however can be imbedded in a
common framework together with the model above by means of an application of
a generalized convolution operator proposed in [15].

The models corresponding to the case when ( 1 ) reduces to the linear diffusion
equation yield to the standard analytic and numerical treatment. In this paper we
are focussed on the proper treatment of the memory terms with nontrivial kernels.
We propose a convergent approximation scheme which combined with the method
of lines (also known as Rothe method) leads to the existence/uniqueness result for
the model. The advantage of our method with respect to the one applied in [9] is
in the less restrictive assumptions on the elliptic part of the problem. Also, our
approximation algorithm has a strong numerical aspect as it provides a tool for
numerical treatment of integral terms with singular kernels (see [15, 16] in this
direction). Such integral terms appear frequently in viscoelasticity theory ([13]
and references given there), theory of phenomena with memory ([14]) as well as
in homogenization limits of scalar conservation laws ([18]). The method presented
below has many potential analytical and numerical applications.

The paper is organized as follows. In Section 2 we analyse properties of the
convolution term under relatively weak assumptions on the convolution kernel.
In Section 3 we define a method of approximation of the convolution term and
formulate basic technical lemmas. In Section 4 we prove the main result of this
paper on existence of a unique weak solution to the problem ( 1 )–( 3 ).

2. Convolution operator

In this section we recall and study properties of the convolution operator Lτ :
L2(I) 7→ L2(I) or, in general Lτ : L2(I ;H) 7→ L∈(I;H) with H a Hilbert space
with scalar product (·, ·)H and norm ‖ · ‖H). Let τ ∈ L1(I) be fixed. The operator
Lτ is defined by

(Lτv)(t) = (τ ? v)(t) =

∫ t

0

τ(t − s)v(s)ds , v ∈ L2(I), t ∈ I.

Recall that the convolution product is symmetric and that formally

d

dt
(f1 ? f2)(t) = f1(0)f2(t) + (

df1

dt
? f2)(t) = f2(0)f1(t) + (

df2

dt
? f1)(t)

(f1 ?
df2

dt
)(t) = f1(0)f2(t) − f2(0)f1(t) + (

df1

dt
? f2)(t).
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Since (see for example [7])

‖ Lτv ‖L2(I) = ‖ τ ? v ‖L2(I) ≤ ‖ τ ‖L1(I) ‖ v ‖L2(I),

it follows that if τ ∈ L1(I) then Lτ is a linear continuous operator. In our analysis
we shall use some nontrivial properties of the convolution operator, precisely its
monotonicity and another property which we call the LT D property.

Monotonicity of the convolution operator means that for an arbitrary v ∈ L2(I ;H)
we have

∫ t

0

((Lτv)(s), v(s))H ds ≥ 0 , ∀t ∈ I,

while the LT D property is the feature of convolution operators expressed by the
inequality

∫ t

0

((Lτvt)(s), v(s))H ds ≥ −CLT D ‖ v(0) ‖2
H,

where CLTD is a positive constant independent of v. The notion LT D (an abbrevi-
ation for like time derivative) is related to the analogy with the following inequality
easily derived for the identity operator in the place of Lτ

∫ t

0

(vt(s), v(s))H ds =
1

2
‖ v2(t) ‖H −1

2
‖ v2(0) ‖H≥ −1

2
‖ v2(0) ‖H .

The following assumption on the convolution kernel is sufficient to yield both
mentioned features.

Assumption 2.1. τ ∈ L1(I) ∩ C1(R+), τ is a nonnegative nonconstant function
with a nonpositive nondecreasing derivative τ ′.

In [12] MacCamy et al proved that Assumption ( 2.1 ) guarantees the (strong)
positivity of the convolution kernel and in consequence monotonicity of the convo-
lution operator. Below we prove that this Assumption implies the LT D property.
Our proof follows the idea outlined in the monograph [7], where also more general
properties of monotone kernels are considered.

Lemma 2.2. Let τ satisfy Assumption ( 2.1 ). Then for v ∈ H1(I) there holds

(Lτvt, v)L2(I) ≥ −‖ τ ‖L1(I)

2
v2(0). (4)

Proof. Define γ to be the (Borel) measure induced by the (distributional) derivative
τ ′ of τ i.e. γ([0, t]) = τ(t). Recall that this formally implies, with δ denoting Dirac
measure, that

∫

[0,t]

f(s)γ(ds) =

∫ t

0

f(s)τ ′(s)ds + τ(0)f(t).

In order to prove ( 4 ) we shall use the identity

V def
= (Lτvt, v)L2(I)

=

∫ T

0

τ(T − t)
v2(t)

2
dt −

∫ T

0

τ(T − t)
v2(0)

2
dt +

∫ T

0

τ(t)
(v(0) − v(t))2

2
dt

−
∫

[0,T ]

∫ T

s

(v(t − s) − v(t))2

2
dtγ(ds).
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Except for the second term, all terms on the right hand side of this identity are
positive (note that since τ is monotone decreasing, (−γ) is a positive measure and
as s = 0, the integrand v(t − s) − v(t) = 0). Hence

V ≥ −
∫ T

0

τ(T − t)
v2(0)

2
dt =

v2(0)

2

∫ T

0

τ(T − t)dt = −v2(0)

2
‖ τ ‖L1(I)

and the Lemma is proved. It remains then to prove ( 5 ). Rewriting the r.h.s. and
l.h.s of this identity we get, respectively
(

∫ T

0

τ(T − t)
v2(t)

2
dt −

∫ T

0

τ(T − t)
v2(0)

2
dt

)

+

(

∫ T

0

τ(t)
v2(0)

2
dt +

∫ T

0

τ(t)
v2(t)

2
dt −

∫ T

0

v(0)v(t)τ(t)dt

)

−
(

∫ T

0

v2(s)

2
τ(T − s)ds +

∫ T

0

v2(s)

2
τ(s)ds −

∫

[0,T ]

∫ T

s

v(t − s)v(t)dtγ(ds)

)

V =

∫ T

0

τ(0)v2(t)dt −
∫ T

0

τ(t)v(t)v(0)dt

+

∫ T

0

∫

[0,s]

v(s − t)v(s)γ(dt)ds −
∫ T

0

v2(s)τ(0)ds

= −
∫ T

0

τ(t)v(t)v(0)dt +

∫ T

0

∫

[0,s]

v(s − t)v(s)γ(dt)ds.

After reduction of the terms which cancel pairwise on both sides it remains to prove
that the first term on the r.h.s. equals the last term on the l.h.s. i.e.

∫

[0,T ]

∫ T

s

v(t − s)v(t)dtγ(ds) =

∫ T

0

∫

[0,s]

v(s − t)v(s)γ(dt)ds.

This last identity is a consequence of the change of order of integration of type
∫ T

0

∫ T

s

f(t, s)dtds =

∫ T

0

∫ s

0

f(s, t)dtds.

We note that the Lemma is valid for every Ĩ = (0, T̃ ) ⊂ I , with T̃ < T . �

Corollary 2.3. Let τ satisfy Assumption ( 2.1 ) and let u ∈ H1(I ; L2(Ω)). Then
for every t ∈ I holds

∫ t

0

((Lτut(s), u(s))L2(Ω) ds ≥ −T (t)

2
‖ u(0) ‖2

L2(Ω) (6)

where T (t)
def
=
∫ t

0
τ(s)ds =‖ τ ‖L1(0,t).

Proof. Using Lemma ( 2.2 ) we can write, for fixed x ∈ Ω treated as a parameter
∫ t

0

(Lτ

du

dt
)(s, x)u(s, x)ds ≥ −T (t)

2
|u(0, x)|2 , ∀x ∈ Ω, u ∈ H1(I ; L2(Ω)). (7)

Integrating ( 7 ) over Ω yields the desired result ( 6 ). �
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There exists an interesting alternative proof of the LT D property for convolution
kernels arising in microstructure models of flows through fissured media (see [15]).
The proof appeals to some relations induced directly by the nature of the described
phenomenon and implicitly implies Cτ ≤ 1.

3. Approximation of convolution term

In this section we define the discrete approximation of the convolution term
which is a basic tool in the proof of our main result in Section 4. We also give some
technical results useful in the sequel.

We define the partition of I as follows: let n > 0 be integer, h = T
n

be the time
step (called also time discretization parameter), let tk = kh, k = 0, . . . n, and

I =
n
⋃

k=1

Ik , Ik = (tk−1, tk].

For an integrable function g its piecewise constant approximation ḡn(s) in I is
defined as gk whenever s ∈ Ik, 1 ≤ k ≤ n with

gk =
1

h

∫ tk

tk−1

g(s)ds , 1 ≤ k ≤ n.

Let τ be fixed and satisfy Assumption ( 2.1 ) and let Lτ be the convolution operator
with kernel τ . We define the discrete counterpart L̄n of Lτ as

(

L̄nv
)

(s) = (Lkv)(s) whenever s ∈ Ik , v ∈ L2(I),

where

Lkv = (Lτv)k =
1

h

∫ tk

tk−1

(Lτv)(s)ds , v ∈ L2(I).

Denote by θk the characteristic function of the subinterval Ik and define a family
of functions {ξk}n

k=1 as follows:

ξk(s) =

∫ s

0

τ(s − r)θk(r)dr.

Directly from the definition of (ξk)n
k=1 we obtain

ξk+1(t) = ξk(t − h) , t ≥ tk+1 , 0 ≤ k ≤ n − 1. (8)

Moreover, all elements of the family {ξk}n
k=1 are nonnegative and since supt∈I ξk(t) =

ξk(tk) they are uniformly bounded by the value cτ = T (T ). We define also

ηi,k =
1

h

∫ ti

ti−1

ξk(t)dt , 1 ≤ i, k ≤ n.

Using ( 8 ) we immediately prove that the coefficients ηi,k, i, k = 1, . . . n are non-
negative and uniformly bounded by cτ . They form a Toeplitz matrix and for every
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1 ≤ i, k ≤ n the following properties hold:

ηi,k = 0 , i < k, (9)

η1,1 = η2,2 = . . . ηn,n > 0 (10)
n
∑

k=1

ηi,k ≤ cτ (11)

ηi,k = ηi−1,k−1 = . . . ηi−k+1,1 , i ≥ k, (12)

ηi,1 < ηi,2 < . . . ηi,i. (13)

Now we set ϑj,k
def
= ηj−1,k − ηj,k and from the above properties we conclude that

ϑj,k ≥ 0. Also

γj =

j−1
∑

k=1

ϑj,k =

j−1
∑

k=1

(ηj−1,k − ηj,k) ≤ ηj,j , 2 ≤ j ≤ n. (14)

The latter bound follows from

j−1
∑

k=1

ηj−1,k =

j−1
∑

k=1

1

h

∫ tj−1

tj−2

ξk(t)dt =
1

h

∫ tj−1

tj−2

j−1
∑

k=1

∫ t

0

τ(t − s)θk(s)dsdt

=
1

h

∫ tj−1

tj−2

∫ t

0

τ(s)dsdt

and

j−1
∑

k=1

ηj,k =
1

h

∫ tj

tj−1

∫ t

0

τ(t − s)χ[0,tj−1](s)dsdt =
1

h

∫ tj

tj−1

∫ t

t−tj−1

τ(s)dsdt

which yield

γj =

j−1
∑

k=1

ηj−1,k − ηj,k =
1

h

∫ tj−1

tj−2

∫ t

0

τ(s)dsdt − 1

h

∫ tj

tj−1

∫ t

t−tj−1

τ(s)dsdt.

From the definition of ηj,j we get

γj = ηj,j +
1

h

∫ tj−1

tj−2

∫ t

0

τ(s)dsdt − 1

h

∫ tj

tj−1

∫ t

0

τ(s)dsdt.

To prove ( 14 ) it suffices now to show

1

h

∫ tj−1

tj−2

∫ t

0

τ(s)dsdt ≤ 1

h

∫ tj

tj−1

∫ t

0

τ(s)dsdt, (15)

a consequence of the fact that the function T (·) as integral of a nonnegative function
is continuous, positive and increasing . Hence ( 15 ) holds and ( 14 ) follows.

The convolution integral and its discrete counterpart take an especially conve-
nient form for step functions, i.e., if v(t) =

∑n
k=1 vkθk(t) for t ∈ I . In this case we

have

(Lτv)(s) =

n
∑

k=1

vkξk(s) , ∀s ∈ I,
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and

(L̄nv)(s) = Liv =

i
∑

k=1

ηi,kvk whenever ti−1 < s ≤ ti.

In the sequel the above representation shall be used frequently. We shall use also the
technical result below which shows the convergence of approximation of integrable
functions by step functions.

Lemma 3.1. Let g ∈ L2(I ; L2(Ω)) and let ḡn be its piecewise constant approxima-
tion in I. Then ḡn → g (strongly) in L2(I ; L2(Ω)), i.e.,

∫ T

0

‖ ḡn(s, ·) − g(s, ·) ‖2
L2(Ω) ds → 0. (16)

Moreover, if g ∈ H1(I ; L2(Ω)), then there exists a constant c dependent on

‖ dg
dt

‖L2(I;L2(Ω)) such that
∫ T

0

‖ ḡn(s, ·) − g(s, ·) ‖2
L2(Ω) ds ≤ ch2. (17)

Proof. The result ( 16 ) is standard (see e.g. [11, 6, 15]). The second part follows
from the definition of ḡn and the estimates

‖ g(s, ·) − ḡn(s, ·) ‖2
L2(Ω)

≤ 1

h

∫

Ik

‖ g(s, ·) − g(t, ·) ‖2
L2(Ω) dt , s ∈ Ik, 1 ≤ k ≤ n. (18)

For g ∈ H1(I ; L2(Ω)) we have

g(s, x) − g(t, x) =

∫ s

t

dg

dt
(r, x)dr , a.e. x ∈ Ω.

Estimating ( 18 ) we obtain, for s ∈ Ik

‖ g(s, ·) − ḡn(s, ·) ‖2
L2(Ω)≤

1

h

∫

Ik

‖
∫ s

t

(
dg

dt
)(r, ·)dr ‖2

L2(Ω) dt

≤ h

∫

Ik

‖ (
dg

dt
)(r, ·) ‖2

L2(Ω) dr

and finally
∫ T

0

‖ g(s, ·) − ḡn(s, ·) ‖2
L2(Ω) ds ≤ h

∑

k

∫

Ik

‖ (
dg

dt
)(r, ·) ‖2

L2(Ω) dr

≤ h2
∑

k

∫

Ik

‖ (
dg

dt
)(r, ·) ‖2

L2(Ω) dr = h2

∫ T

0

‖ (
dg

dt
)(r, ·) ‖2

L2(Ω) dr,

hence, we have obtained ( 17 ). �

4. Existence/uniqueness result

In this section we prove existence of a unique (weak) solution to the problem
( 1 )–( 3 ). We set

H = L2(Ω), V = H1
0 (Ω)

and denote by (·, ·) the scalar product in H (identified with the duality pairing
between H and H∗) and by | · |, ‖ · ‖ the norms in H, V , respectively. Note that
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by the assumptions on Ω as in the Introduction the imbedding V ⊂ H is dense and
compact.

We shall be concerned with a solution of the problem

(ut, v) + (Lτut, v) + a(u, v) = (f, v) , ∀v ∈ V, ∀t ∈ I (19)

(u(0), v) = (u0, v) , ∀v ∈ V (20)

which is the weak form of ( 1 )–( 3 ) with bilinear form a(·, ·) defined by

a(u, v) =

d
∑

i,j=1

Di,j

∫

Ω

∂u

∂xi

∂v

∂xj

(x)dx , u, v ∈ V.

The proof of existence of a (unique) solution to this problem consists of several
steps, which, up to the special treatment of the convolution term, follow the general
structure of proofs known as Rothe method (method of lines) or method of fractional
steps (e.g. [10, 11]). At first, using the discrete counterpart of the convolution term
defined in Section 3, we construct a sequence approximating the solution of the
problem ( 19 )–( 20 ), whose elements are defined as solutions of appropriately
chosen boundary value problems. Next we prove the convergence of this sequence
by using some a-priori estimates and the technique similar to Ascoli–Arzelá lemma.
In the end we show that our approximation scheme is consistent i.e. that the limit
of the sequence of approximations satisfies the problem ( 19 )–( 20 ).

Below we restrict ourselves to the case where the following assumptions are
satisfied:

• the convolution kernel τ satisfies Assumption ( 2.1 ),
• tensor D is constant, symmetric and satisfies the ellipticity condition

∑

Dijξiξj ≥ cD

∑

|ξi|2 , ∀ξ = (ξi)
d
i=1 , ξ 6= 0,

with a positive constant cD,
• f ∈ H1(I ; H), f(0) ∈ H ,
• u0 ∈ V and we have sup|v|≤1,v∈H a(u0, v) < ∞.

We note that under above assumptions the convolution operator Lτ is continu-
ous, monotone and satisfies the LT D property, while a(·, ·) is symmetric, continuous
and elliptic, i.e., there exist constants ca, ka > 0 such that

a(u, u) ≥ ca ‖ u ‖2 , ∀u ∈ V (21)

a(u, v) ≤ ka ‖ u ‖‖ v ‖ , ∀u, v ∈ V. (22)

We remark that the assumptions on D (made above for simplicity), are not crucial
for our results, as it can be seen from the proof below. They could be relaxed to
more general form of a(·, ·) (in particular, nonsymmetric form with space variable
dependent coefficients).

Lemma 4.1. Problem ( 19 )-( 20 ) has at most one solution.

Proof. Assume that u1, u2 are two solutions of ( 19 )-( 20 ). Then, subtracting
equation ( 19 ) rewritten for u1, u2, respectively, we get

((u1 − u2)t, v) + (Lτ (u1 − u2)t, v) + a(u1 − u2, v) = 0 , ∀v ∈ V.
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Take v = u1 − u2 and integrate over (0, t) to obtain

1

2
|u1 − u2|2(t) − 1

2
|u1 − u2|2(0) +

∫ t

0

(Lτ (u1 − u2)t, u1 − u2)(s)ds (23)

+

∫ t

0

a(u1 − u2, u1 − u2)(s)ds = 0.

By the LT D property of operator Lτ , initial condition u1(0) = u2(0), ellipticity of
a(·, ·) we infer

1

2
|u1 − u2|2(t) + ca

∫ t

0

‖ u1 − u2 ‖2 (s)ds ≤ 0.

Hence u1(t) = u2(t), ∀t ∈ I. �

Below we define the approximation scheme.

Definition 4.2. Define ui ∈ V, 1 ≤ i ≤ n as the solutions of

(∂hui, v) +

i
∑

k=1

ηi,k(∂huk, v) + a(ui, v) = (fi, v) , v ∈ V, 1 ≤ i ≤ n

(24)

with

∂hui
def
=

1

h
(ui − ui−1), , 1 ≤ i ≤ n,

where u0 is identified with the initial value specified in ( 20 ) and fi is the piecewise
constant approximation of f .

Let us remark that the sequence ui, 1 ≤ i ≤ n is well defined, i.e., for each
1 ≤ i ≤ n there exists a unique solution ui ∈ V of the equation ( 24 ). To see this
we define the operator Ah

i : V → V ∗ by

(Ah
i u, v) =

1 + ηi,i

h
(u, v) + a(u, v)

which by ( 21 )–( 22 ) is continuous and V -coercive. Letting

Fi = fi −
i−1
∑

k=1

ηi,k∂huk +
1 + ηi,i

h
ui−1

with Fi ∈ H ⊂ V ∗, from the Lax-Milgram theorem we infer the existence of a
unique solution of the problem

(Ah
i ui, v) = (Fi, v) , ∀v ∈ V,

an equivalent of ( 24 ).
Below we prove boundedness of the sequence (ui)

n
i=1.

Lemma 4.3. Let the sequence (ui)
n
i=1 be defined by ( 24 ). Then for 2 ≤ j ≤ n

| ∂huj |≤ h | ∂hfj | + max
k=1...j−1

| ∂huk | (25)

and for j = 1

| ∂hu1 |≤| f(0) | +h | ∂hf1 | +ca,u0
(26)

with ca,u0
= sup|v|≤1,v∈H a(u0, v) < ∞ and ∂hf1 = f1−f(0)

h
.
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Proof. Let j ≥ 2. We rewrite ( 24 ) for i = j, i = j − 1, subtract the two equations
and get

(1 + ηj,j)(∂huj , v) + a(uj − uj−1, v)

= (fj − fj−1, v) + (∂huj−1, v) −
j−1
∑

k=1

ηj,k(∂huk, v) +

j−1
∑

k=1

ηj−1,k(∂huk, v).

Now we take v = ∂huj , use the definition and properties of ϑj,k ( 14 ), ellipticity
of the form a(·, ·), Cauchy-Schwarz inequality, Poincaré–Friedrichs inequality with
the appropriate constant for simplicity set to identity, to get the estimate

(1 + ηj,j) | ∂huj |2 +hca | ∂huj |2 (27)

≤ h | ∂hfj || ∂huj | + | ∂huj−1 || ∂huj | + | ∂huj |
j−1
∑

k=1

ϑj,k | ∂huk | .

If | ∂huj |= 0 hypothesis of the Lemma follows. Otherwise we divide both sides of
( 27 ) by | ∂huj |, use definition of γj (see ( 14 )) and estimate

j−1
∑

k=1

ϑj,k | ∂huk |≤ max
k=1,...j−1

| ∂huk |
j−1
∑

k=1

ϑj,k

to get

(1 + ηj,j + hca) | ∂huj |≤ h | ∂hfj | +(1 + γj) max
k=1,...j−1

| ∂huk | . (28)

Since ca > 0, ηj,j ≥ 0 we have 1
1+ηj,j+hca

< 1, moreover, by ( 14 ) follows
1+γj

1+ηj,j+hca
≤ 1. Eliminating constants in ( 28 ) yields

| ∂huj |≤ h | ∂hfj | + max
k=1,...j−1

| ∂huk |,

and we have proved ( 25 ). The proof of ( 26 ) proceeds similarly. �

The following result is elementary.

Lemma 4.4. Let n > 0 be integer and let us be given two sequences (finite) of
positive numbers (ak)n

k=1, (bk)n
k=1 such that

ak ≤ bk + max
i=1,...k−1

ai , ∀k = 1 . . . n.

Then for each 1 ≤ k ≤ n, ak ≤
∑k

i=1 bi.

This result is applied to the estimates given in Lemma ( 4.3 ) with

ai = | ∂hui | , i = 1, . . . n

bi = h | ∂hfi | , i = 2, . . . n

b1 = | f(0) | +h | ∂hf1 | +ca,u0

with constant c∂u set as

c∂u = ca,u0
+ | f(0) | +

√
T ‖ df

dt
‖L2(I;H)

to obtain the following.
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Corollary 4.5. There exists a positive constant c∂u independent of n such that
∀i = 1, . . . n

| ∂hui |≤ c∂u. (29)

Above we derived bounds in the norm of H ; below we prove the bounds in V .

Lemma 4.6. There exists a positive constant cu independent of n such that ∀j =
1, . . . n holds

‖ uj ‖≤ cu. (30)

Proof. To prove this estimate, we rewrite ( 24 ) for i = j, v = uj in the form

a(uj , uj) = (fj , uj) − (1 + ηj,j)(∂huj , uj) −
j−1
∑

k=1

ηj,k(∂huk, uj) (31)

From ( 21 ), ellipticity of a(·, ·) and Cauchy-Schwarz inequality we estimate

ca ‖ uj ‖2≤| fj || uj | +(1 + ηj,j) | ∂huj || uj | + | uj | max
k=1,...j−1

| ∂huk |
j−1
∑

k=1

ηj,k

(32)

Now,

fj = f(0) +

j
∑

k=1

∂hfk

| fj |≤| f(0) | +
√

T ‖ df

dt
‖L2(I;H)= cf

hence, by ( 11 ) and ( 32 ) we infer

ca ‖ uj ‖2≤‖ uj ‖ [cf + (1 + 2cτ )c∂u] .

The conclusion of the Lemma, i.e., the estimate ( 30 ), follows with

cu =
1

ca

(cf + (1 + 2cτ)c∂u).

and this concludes the proof. �

Given (ui)
n
i=0 we define the Rothe’s function un(t) and the corresponding step

function ūn(t)

un(t) = ui−1 + (ui − ui−1)
t − tt−1

h
, ti−1 < t ≤ ti , i = 1 . . . n (33)

ūn(t) = ui , t ∈ Ii , i = 1 . . . n. (34)

As a consequence of Corollary ( 4.5 ) and Lemma ( 4.6 ) we have

Corollary 4.7. Let un, ūn be defined by ( 33 ), ( 34 ) and constants cu, c∂u as in
( 29 ), ( 30 ). Then

| dun

dt
(t) | ≤ c∂u , a.e. t ∈ I,

‖ ūn(t) ‖ ≤ cu , ∀t ∈ I.

The boundedness of sequences expressed in this Corollary implies the conver-
gence of the appropriate subsequences, which by means of a modified version of
Ascoli–Arzelà lemma (see [11, 15]) gives
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Lemma 4.8. There exists u ∈ C(I ; H) ∩ L∞(I ; V ) with du
dt

∈ L∞(I ; V ) and a
subseqence {unk

} of {un} such that (⇀ denotes weak convergence)

unk
→ u in C(I ; H)

unk
(t) ⇀ u(t) , ∀t ∈ I, in V

ūnk
(t) ⇀ u(t) , ∀t ∈ I, in V

dunk

dt
⇀

du

dt
, in L2(I ; H).

Now it remains to prove that the limit u of the sequence of approximations is
actually the sought solution of our problem. Note that by its definition u satisfies
the equation ( 20 ), i.e., the initial condition. To prove that u satisfies also ( 19 )
we take an arbitrary v ∈ V and consider convergence of

∫ t

0

(L̄nk

dunk

dt
(s), v)ds =

∫ t

0

(R1
n(s) + R2

n(s), v)ds →
∫ t

0

((Lτut)(s), v)ds(35)

with

R1
n(s) = (L̄nk

dunk

dt
)(s) − (Lτ

dunk

dt
)(s)

R2
n(s) = (Lτ

dunk

dt
)(s) − (Lτ

du

dt
)(s).

We know that Lτ is continuous over L2(I ; H), moreover, given a sequence of func-
tions (zn) ∈ L2(I ; H), such that zn(s) ⇀ 0, ∀s ∈ (0, T ), we infer that (Lτzn)(s) ⇀ 0.
Setting

zn(s) =
dun

dt
(s) − du

dt
(s)

we get the representation

(R2
n(s), v) = ((Lτznk

)(s), v) =

∫

Ω

∫ t

0

τ(s − r)znk
(x, r)drv(x)dx

=

∫ s

0

τ(s − r)

∫

Ω

znk
(x, r)v(x)dxdr =

∫ s

0

τ(s − r) (znk
(r), v) dr

and from the last Lemma we get (R2
n(s), v) → 0 , ∀s ∈ (0, T ), hence,

∫ t

0
(R2(s), v)ds →

0.
It remains to prove

∫ t

0 (R1
n(s), v)ds → 0. In turns out that we are able to prove

even the strong convergence R1
n → 0 in L2(I ; H). Setting Z(s) = (Lτ

dunk

dt
)(s), with

Zi = 1
h

∫

Ii
Z(s)ds we have Z ∈ L2(I ; V ) and

R1
n(s) =

1

h

∫

Ii

[

(Lτ

dunk

dt
)(t) − (Lτ

dunk

dt
)(s)

]

dt = Zi − Z(s) , s ∈ Ii.

By virtue of Lemma ( 3.1 ), there follows
∫ T

0
‖ Z̄n(s) − Z(s) ‖2 ds → 0 as n → ∞.

But
∫ T

0
‖ R1

n(s) ‖2 ds =
∫ T

0
‖ Z̄n(s) − Z(s) ‖2 ds and ( 35 ) follows.

Consider now the equation

(
dun

dt
(t), v) +

(

(L̄n

dun

dt
)(t), v

)

+ a(ūn(t), v) = (f̄n(t), v)
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which from definition is satisfied by each element of the sequence (un)∞n=1. We
integrate this equation over (0, t) and get

∫ t

0

(
dunk

dt
(s), v)ds +

∫ t

0

(

(L̄nk

dunk

dt
)(s), v

)

ds

+

∫ t

0

a(ūnk
(s), v)ds =

∫ t

0

(f̄nk
(s), v)ds.

Now we pass to the limit with nk → ∞, using continuity of the form a(·, ·), Lebesgue
dominated convergence theorem, Lemma ( 3.1 ) and ( 35 ) and obtain

∫ t

0

(
du

dt
(s), v)ds +

∫ t

0

(

Lτ

du

dt
)(s), v

)

ds +

∫ t

0

a(u(s), v)ds

=

∫ t

0

(f(s), v)ds , ∀v ∈ V , ∀t ∈ I.

Differentiate this equation with respect to t and finally obtain

(
du

dt
, v) + (Lτ

du

dt
, v) + a(u, v) = (f, v) , ∀v ∈ V , a.e. t ∈ I.

This means that the limit function u satisfies equation ( 19 ). Since u satisfies also
the initial condition ( 20 ), it is a solution of the problem ( 19 )–( 20 ), which by
Lemma ( 4.1 ) is unique.

We note that V, H are reflexive Banach spaces, hence weakly sequentially com-
pact spaces, i.e., (uniform) boundedness of the sequences {ūn(t)}, {dun

dt
(t)} in spaces

V and H (respectively), together with uniqueness of limits of (convergent) subse-
quences, imply convergence of the whole sequences.

This gives us finally the main result of this paper.

Theorem 4.9. There exists a unique solution u of the problem ( 19 )-( 20 ),
which satisfies u ∈ C(I ; H) ∩ L∞(I ; V ) with du

dt
∈ L∞(I ; H) and which depends

continuously on the data, i.e., the following inequality holds

|u(t)|2 +

∫ t

0

‖ u(s) ‖2≤ C
(

|u(0)|2+ ‖ f ‖2
L2((0,t);L2(Ω))

)

. (36)

Proof. It remains to prove the relation ( 36 ). We consider the equation ( 19 )
integrated with respect to time over (0, t), with v = u, which gives

1

2
|u(t)|2 − 1

2
|u(0)|2 +

∫ t

0

((Lτut)(s), u(s)) ds +

∫ t

0

a(u(s), u(s))ds

=

∫ t

0

(f(s), u(s))ds.

The LT D property, ellipticity of a(·, ·), Cauchy–Schwarz inequality, and Young
inequality yield for any ε > 0

|u(t)|2 + 2ca

∫ t

0

‖ u(s) ‖2 ds (37)

≤ (2CLT D + 1)|u(0)|2 +
1

ε

∫ t

0

|f(s)|2ds + ε

∫ t

0

|u(s)|2ds.
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Now set ε = ca and apply Poincaré–Friedrichs ineqiality with the Poincaré constant
set to 1 to conclude

|u(t)|2 ≤ (2CLT D + 1)|u(0)|2 +
1

ca

‖ f ‖2
L2((0,t),L2(Ω)) . (38)

Combining ( 37 ) and ( 38 ) we get ( 36 ). �
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