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Abstract. A model for nonisothermal flow in double–porosity
medium is constructed by the technique of homogenization. The
coupling between microscopic and macroscopic equations is dis-
cussed, with numerical examples given. The model may be imbed-
ded in a framework common for the models corresponding to differ-
ent memory effects exhibited by the flow which are related to the
hierarchical structure of the medium. For this framework results
of numerical experiments are presented.

1. Introduction

In this paper we present a detailed construction of a model describing
flow of a fluid through fissured medium in nonisothermal conditions.

In recent years much work has been devoted to modeling, analysis
and simulation of single– and multi–component flows in fissured media
(see references to this paper). Fissured media are “double–porosity”
media composed of a matrix of porous blocks separated by a system of
fissures. This hierarchical structure influences the character of the flow
which is described by partial differential equations with integral terms.
There may occur different geometrical instances of the medium, where
the hierarchic structure is developed only in some prescribed direction
e.g. in a layered medium (see [10]). Common characteristics for all
models is that they take into account several dimension scales: the size
of the reservoir, the diameter of porous blocks and the diameter of fis-
sures. The research in microstructure models for aggregated media has
been motivated by applications in oil recovery simulation in fractured
rock reservoirs ([2, 3, 4, 5, 6, 7]) displacement of contaminated water
in aggregated soils ([18, 19, 20]) and additionally by electric charge
conduction in multi–layered conductors ([26]).

In this paper we deal with coupled phenomena of mass and energy
transfer which occur during flow of a fluid through a fissured medium.
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Such phenomena for the case of an ordinary porous medium have been
studied in the context of natural convection (see [13, 14, 16]), multi–
component flows where exchange of energy between different compo-
nents of the mixture occurs (see [12]) or phase changes like evaporation
and solidification processes ([17, 23, 25, 33]). Our goal here is to pro-
vide an extension of models describing porous media so that the new
models would incorporate special characteristics of fissured media but
should remain analytically and numerically tractable.

Our model is constructed by the homogenization technique, which
enables identification of coefficients and components of the model with
the help of the microscopic information about the medium. In section
( 2 ) we review general homogenization ideas used in modeling of flows
in porous media, which are applied in section ( 3 ) to the construction
of our model. Technical details of this construction are supplied in
the Appendix to this paper. In section ( 4 ) we investigate a reduced
version of our model which imbeds this model in a framework common
for numerous microstructure double–porosity models.

This framework concerns a way of representation of integral de-
lay terms which are related to the double–porosity structure of the
medium. When they are represented as convolution integrals, it leads
to an explicit decoupling of the macroscopic equations from the micro-
scopic ones. The different kernels of these convolution terms correspond
to different types of memory effects exhibited by the flow which can be
easily compared in this framework. Another advantage of the convolu-
tion representation is that with the help of some special tools developed
for the needs of analysis and approximation of integral terms in convo-
lution form (see [28]) we can combine them with what has been done
for the models where no hierarchical structure is present. Such an ap-
proach was used in the analysis of equations arising from the modeling
of diffusion in fissured media (see [28, 30]) as well as in the construc-
tion of approximations for the solutions of the models of thermal flows
in fissured media in [29]. At the end of section ( 4 ) we present re-
sults of numerical experiments which show the influence of hierarchical
structure of the medium for different delay effects present.

In the following we shall use abbreviations when referring to different
models for porous and fissured media, usually denoting the former by
PM and the latter by FM, diffusion by D, miscible displacement by
MD, nonisothermal flows by NF.
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2. Homogenization models of flows in porous and fissured

media

In many cases when we are about to model a physical phenomenon,
only a partial knowledge of its characteristics is available to us; we are
also usually unable to identify the parameters of the underlying mathe-
matical model with physically measurable quantities. In particular we
are often given detailed information about a phenomenon available at
a certain microscopic level. However a microscopic description though
exact is too complex, so we are bound to derive laws governing the
phenomenon at a macroscopic level. For the pass from the micro–
to the macroscopic level different approaches are possible. For exam-
ple, for modeling of flows in porous media one may use stochastic and
averaging (see [9, 27, 31]) or alternatively homogenization techniques
(see [8, 32] for a review) which lead from microscopic description of
the fluid motion through channels of the porous body to macroscopic
models related to Darcy or Darcy–Forchheimer laws. The advantage
of the latter method with respect to the former ones is in a consis-
tent mathematical framework for the analysis of coupling between the
micro– and the macrostructure provided by homogenization. In this
paper we use homogenization method.

At first we assume that the porous medium has a periodic structure
(it is a usual assumption for the homogenization models of porous
media) and note that this approach is entirely different from the one
used with probabilistic methods (repetitive patterns as opposed to a
random structure). In the homogenization setting we start with models
Pε describing the phenomenon at a microscopic level, dependent on
the period ε of the structure. Then we “pass to the limit” with ε →
0 and derive macroscopic models P∗ whose solutions u∗ correspond
to local averages of the microscopic model solutions uε. The original
”exact microscopic” problem which we originally want to study may
be regarded as Pε for ε = 1 hence the limiting problem solutions u∗

provide us with the information about local averages of solutions to
the original problem.

The first goal of homogenization is thus the construction of the “lim-
iting problem” P∗ whose coefficients are called “effective”. This is cus-
tomarily achieved by means of the multiscale expansion method (see
[40]) where the oscillating variables (with frequency related to ε) are
treated as dependent (spatially) on the two (or more) scales: denot-
ing by x the original space variable we additionally consider the local
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variations y = x
ε

and obtain

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . , y =
x

ε
(1)

d

dxi

=
∂

∂xi

+
1

ε

∂

∂yi

(2)

∇ = ∇x +
1

ε
∇y (3)

4 =
1

ε2
4yy + . . . . (4)

with u∗ denoting the local average (average over the period of the struc-
ture) of u0. The values of macroscopic problem coefficients usually
depend explicitly on the microscopic problem coefficients and implic-
itly on the geometry of the medium via the solution of an auxiliary
microscopic problem.

The second goal of homogenization is to prove correctness of the
construction, i.e. that as the microscopic structure is refined (i.e. as
ε → 0), the sequence of solutions uε of Pε converges to the solution u∗

of P∗.
The “pass” from micro to macro level that we are doing can be

seen as an action reverse to “microscope zooming”, with ε related to
the “measure of microscope lenses zooming” adjusted according to the
periodic structure of the medium.

The problems Pε and P∗ have in general different coefficients and may
have a different structure. For example in case when Pε are evolution
problems, it is convenient to construct P∗ with help of some terms in
charge of memory effects related to conservation laws reflected in the
microscopic model (see [21, 22, 38, 39]).

Geometry of porous media makes phenomena of flows in porous me-
dia an ideal candidate for modeling by homogenization. It is fairly
natural to idealize a porous body as a collection of periodically dis-
tributed cells, each of them containing a solid and a void cavity part,
the first constituting the solid matrix and the second creating the sys-
tem of channels–pores. Then the steady flow in channels of the porous
body is described by Stokes problem defined in each cell’s void part
and homogenization delivers the macroscopic relation between seepage
velocity and pressure gradient which turns out to be equivalent to (ex-
perimental) Darcy’s law (see [37]) where (static) information about the
microstructure is retained in the diffusivity coefficient tensor. This law
is a basis on which models describing diffusion in porous media (DPM)
are derived. If a more complicated nature of flow is to be described, e.g.
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governed at the microscopic level by Navier-Stokes equations, then ho-
mogenization leads to macroscopic equations describing the nonisother-
mal flow in a porous medium (NFPM) (nonisothermal flow in porous
media) (see [13, 14]) with some terms reflecting the dynamic influence
of the microstructure.

The hierarchical geometry of fissured media requires two “reverse–
zooming” steps: the first one in order to pass from the level of an
individual pore to the level of a porous body, the second necessary for
the pass from the level of a cell of the fissured medium to the level of
the whole reservoir. With the double–porosity structure of the medium,
viewed as a collection of two porous media of different hydraulic prop-
erties (porous matrix and system of fissures), the first step supplies the
equations describing the flow inside each of the porous components. In
the second step we use individual properties of the porous components
(blocks and fissures) calculated as in the first step. The whole two–step
procedure is called reiterated homogenization. In a simpler approach
we can restrict ourselves to what is supplied by physical measurement
at the level of (macro) cells and to phenomenological laws describing
both porous components (consistent with what is derived by the first
step). In what follows we use the latter approach, i.e. assume that we
are given the coefficients of the flow in two porous components of the
medium as well as the information about the individual geometry of
the cells (in particular proportions between blocks and fissures). With
that information we write problems Pf and Pm, with subscripts f and

m denoting the fissures system and matrix system respectively. The
fissured medium is described (as customarily done, e.g. [5]) as a peri-
odic collection of cells, each of which is isometric to a generic cell Ω0

composed of the block Ωm,0, a part of surrounding fissure Ωf,0 and their
interface Γ0

Ω0 = Ωf,0 ∪ Ωm,0 ∪ Γ0

Problems Pf and Pm are usually similar in structure but differ in coef-
fcients. They are complemented by a relation defining behavior of the
flow at the interface of the two components, hence, describing the influ-
ence of the flow in fissures on that in individual blocks and, reciprocally,
contribution of blocks to the total flow in fissures.

For an arbitrary ε we (formally) add the ,ε subscript to the vari-
ables and coefficients and perform some additional scaling necessary
to preserve the nature of the flow (the idea of scaling is motivated in
the sequel). The problems Pm, Pf with this notation correspond to
Pf,ε, Pm,ε for ε = 1. The ε–cells may be regarded as images of Ω0 un-
der translation and shrinking operations Ω0 ⇒ Ω0,ε The geometry of
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first step

micro macro

solid and void blocks and fissures
Stokes ⇐⇒ Darcy’s law (DPM)
Navier-Stokes NFPM

second step

micro macro

blocks and fissures double porosity reservoir
DPM ⇐⇒ DFM
NFPM NFFM

Table 1.

ε–cells doesn’t change under this affine map. The whole domain Ωε is
seen as a collection of ε–cells Ω0,ε spread over the entire reservoir, with
Ωf,ε denoting the totality of fissures system, Ωm,ε the collection of the
blocks (the matrix) and Γε the collection of block–fissures interfaces.

Above we have mentioned that the DPM models arise as a result
of the first “reverse-zooming” step. In the second step DPM serve
as a starting point in construction of models decribing diffusion in
fissured media (DFM) for one or more fluid components (miscible and
immiscible case) – see [4, 5, 6, 20, 21, 28]. In the case of thermal
flows the first step supplies us with NFPM models; as a result of the
second step in the sequel NFFM i.e. a model for nonisoithermal flows
in fissured media (NFFM)is derived. The construction of the model
itself is the first element of the homogenization method. The second
one i.e.. the convergence proofs, have been presented for DPM in [37].
The proofs for DFM follow a a promising technique of double–scale
convergence as in [1, 7, 24].

The models for porous and fissured media are related to each other
as in the table 1.

The remainder of this section is devoted to some homogenization
tools used in definition of the coupling between micro and macrostruc-
ture. We start with a discussion of “scaling” necessary in definition of
ε–problems and then we describe the microscopic structure influence on
some static and dynamic elements of macroscopic equations: coefficient
tensors and kernels of integral memory terms, respectively.
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Scaling in homogenization

Here we motivate the “scaling”in ε–problems. Let us consider dif-
fusion in a medium composed of n regularly distributed square cells
built of circular porous blocks isometric to a generic block Ω0 of radius
R1 separated by a system of channels. Let us assume that the porous
blocks are initially filled with some fluid and the channels are initially
void. For simplicity we consider two–dimensional domains of flow. If
we consider the ε–geometry of the domain, we’ll be given ε−2n cells
Ωi,ε, with each of circular blocks of radius Rε = ε2R1. The diffusion in
each block is described by the following system of equations

∂uε

∂t
= cε 4 uε in Ωi,ε

uε = 0 on ∂Ωi,ε, t > 0

uε(·, 0) ≡ 1 in Ωi,ε

satisfied in each block Ωi,ε with i = 1...nε−2 isometric to Ω0,ε. The
outflowing flux from a block for t > 0 (into the system of channels) is
given by the divergence theorem as

Qi,ε(t) =
∫

Ωiε

∂uε

∂t
(y, t)dy

while its average is qi,ε = 1
|Ωi,ε|

Qi,ε(t) and the total flux by isometry is

equal to

Tε(t) = nε−2
∫

Ω0ε

∂uε

∂t
(y, t)dy , t > 0

It is now our goal to demonstrate that in order to prevent the total
flow Tε from attaining an unjustified growth (it is because we want
to preserve the character of the flow), one has to scale the diffusion
coefficient cε as the blocks shrink (i.e. as Rε → 0). This is clear
from the results of numerical experiments presented in the table ( 2 )
(see also heuristic reasoning in [5]). The values in the table have been
calculated by means of the Galerkin approximation method combined
with implicit Euler scheme for discretization in time. As ε decreases,
the value of Tε grows, unless the diffusion coeffcient cε is appropriately
scaled by a factor ε2.

On the other hand, scaling may be justified by purely technical argu-
ments. If we use the multiple scales expansion technique for asymptotic
expansion of ε–variables and do not scale the diffusion coefficients, some
terms of the asymptotic expansion will be dropped during calculation
of coeffcients. For example, let us consider the Stokes problem defined
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# ε cε ε−2cε Q0,ε Tε q0,ε

1 1 1 1 28.9564 28.9564 9.23195
2 0.5 1 4 18.3304 73.3216 23.3765
3 0.5 0.25 1 7.23911 28.95644 9.23195
4 0.1 1 100 2.31633 231.633 73.8497
5 0.1 0.01 1 0.289564 28.9564 9.23193

Table 2. Flow quantities with respect to parameters ε, cε

for void ε–blocks Ωi,ε separated from the solid by the interface ∂Ωi,ε

∇pε − kε 4 v̄ε = 0 , y ∈ Ωi,ε

∇ · v̄ε = 0 , y ∈ Ωi,ε

v̄ε = 0 , y ∈ ∂Ωi,ε

Using the expansion v̄ε(x) = v̄0(x, y)+εv̄1(x, y)+ε2v̄2(x, y)+. . . and the
formula for derivatives (see above e.g ( 3 )) we arrive at a conclusion
(comparing terms at like powers of ε) that if kε does not depend on
ε, then the terms satisfy v̄0 ≡ v̄1 ≡ 0. It means that the asymptotic
expansion might as well start with the second term v̄2. But, if the
scaling is kε = ε2k1 is present, the first terms of the expansion are
retained.

Effects of microstructure on macroscopic quantities.

Let us be given a generic cell C ⊂ Rd, d = 2, 3 with a connected sub-
set Cout adjacent to the cell’s boundary ∂C, with interface Γ separating
Cout from its complement Cin in C . Then we define ωC

j , j = 1, ...d as
the C–periodic functions (determined up to an additive constant) which
are harmonic on Cout and satisfy flux boundary conditions prescribed
by unit vectors ēj ∈ Rd, j = 1, ...d on the interface Γ, precisely,

∇2
yωj = 0 , y ∈ Cout

∇yωj × η = −ēj × η , s ∈ Γ.

We define also tensor σC
i,j, i, j = 1..d of elements

σC
ij =

1

|Cout|

∫

Cout

∂ωj

∂yi

dy.

This tensor is used for calculation of the effective diffusivity (in general,
coefficient of the laplacian) tensor. In the first reverse–zooming step
(Darcy’s law derived from microscopic formulation of Stokes law) values
of diffusivity are equal to values of σC scaled by the original diffusivity
coefficient. In case of the second reverse–zooming step (diffusion in
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# Rin diam(C) σC
1,1 σC

1,2 σC
2,1 σC

2,2

1 0.1 1 0.0217545 -3.08218e-10 -3.29225e-10 0.0217545
2 0.3 1 0.144773 4.79794e-08 4.39782e-08 0.144773
3 0.45 1 0.116305 5.47182e-09 8.99997e-09 0.116305
4 0.2 2 0.0870183 9.14788e-09 9.23737e-09 0.0870183
5 0.6 2 0.579091 1.83346e-07 1.97297e-07 0.579091
6 0.9 2 0.465218 -3.46946e-07 1.72928e-07 0.465219

Table 3. Numerically calculated values of σC

fissured media) the diffusivity coefficient arises as the sum of σC
ij + δK

ij

(where δK is Kronecker’s symbol) scaled as above and additionally
multiplied by a scalar coefficient reflecting proportions between blocks
and fissures (see [5, 6] or derivation of NFFM in the sequel).

The values of ωC hence also of σC depend on the geometry of the orig-
inal generic cell. In order to calculate their numerical approximation
one needs to impose supplementary conditions to ensure uniqueness of
the solution (hence solvability of the approximation procedure). Sam-
ple values obtained for a square cell C of diameter diam(C) with circle
shaped Cin (of radius Rin) are presented in the table ( 3 ).

These results in particular show how the proportions between the size
of Cout and of its complement Cin (rows 1, 2, 3, and 4, 5,6) influence
calculated values of the tensor σC . On the other hand, we observe that
as the cell’s size increases with ε, the corresponding values of σC change
with ε2. For example, compare values in rows 1 and 4: the size of the
cell in 4’th row is doubled with respect to the 1’st row, and the values
of tensors are exactly scaled by factor 4 which is consistent with the
“scaling” issue discussed above. Hence, the actual size of the generic
cell (for ε = 1) is essential. The smaller the size of the generic cell, the
less significant is the contribution of σC to the macroscopic diffusivity
coefficient (recall that σC

ij are added to Kronecker’s symbol (identity
matrix), hence, the microstructure’s influence is less significant.

The influence of the geometry and coefficients given on the microscale
is also evident when considering the contruction of the evolution prob-
lems. We note that the tensor σC providing a contribution to diffu-
sion coefficients depends on the ”static microstructure” of the problem.
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Now we shall consider an evolution problem defined in Cin with pre-
scribed values on the interface Γ.

∂v

∂t
− k 4 v = 0 , y ∈ Cin

v|Γ ≡ b(t) , t > 0

v(y, 0) = a(y) ≡ const , y ∈ Cin

We define r, r̃ to be the solutions of the above problem for b ≡ 0, a = 1
and b ≡ 1, a = 0, respectively. Then the function v (for general bound-
ary and initial conditions) can by means of Green function representa-
tion be written as

v(y, t) = ar(y, t) +
∫ t

0
b(s)

∂r̃

∂t
(y, t − s)ds = ar(y, t) + (b ?

∂r̃

∂t
)(y, t)

Define a function τC,k(t) = − d
dt

1
|Cin|

∫

Cin
r(y, t)dy, note that since r +

r̃ ≡ 1 we have τC,k = d
dt

1
|Cin|

∫

Cin
r̃(y, t)dy and calculate the flux Qv(t)

flowing out of Cin

Qv(t) =
∫

Γ
k(∇v · η)(s, t)ds =

∫

Cin

∂v

∂t
(y, t)dy

=
∫

Cin

{

a
∂r

∂t
+

∂

∂t

[

b ?
∂r̃

∂t

]}

dy =

= −

(

−a|Cin|
d

dt

[

1

|Cin|

∫

cin

r(y, t)dy

])

+
∫

Cin

[

b(0)
∂r̃

∂t
+

(

∂b

∂t
?

∂r̃

∂t

)]

= −|Cin|

[

τC,k ?

(

∂b

∂t
+ δ(b(0) − a))

)]

where we have used derivation rules for the convolution product and
the fact that δ (Dirac symbol) is the unity of this product.

We note that the expression b(0)−a is a measure of “incompatibility”
between initial and boundary condition which is instantaneously prop-
agated (in most models initial “equilibrium” conditions are assumed,
hence, b(0) = a), in contrast to the diffusion influenced by boundary
flux ∂b

∂t
which is delayed with “speed” controlled by the function τC,k(·).

Function τC,k is in general singular at zero (see its definition), posi-
tive, and monotone decreasing, sice it describes dynamics of a diffusion
problem with no sources. Its values strongly depend on the geometry
of C and on the coefficient k and can be calculated only in an approx-
imate way. In some simple cases (k ≡ 1, trivial geometry of the cell C

e.g. circular block Cin embedded in a rectangular C) one can calculate
τC,k(·) analytically as well as numerically and then a relatively good
agreement of respective values is obtained (see [28]).
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In summary, the values of the convolution kernel τC,k and auxiliary
diffusivity tensor σC are dependent on the microstructure. In the sequel
we shall show how they are used in construction of the model NFFM.

3. Construction of NFFM

In this section we present homogenization construction of the model
NFFM describing flow of a thermally dilatable fluid (liquid) in a fis-
sured medium according to the second “reverse-zooming” step explained
above. We start from a model describing the nonisothermal flow in an
ordinary porous medium (NFPM), then we shall write down equations
constituting Pm, Pf , i.e., the versions of NFPM for both components of
the hierarchic structure. Next we define their ε–versions (with appro-
priate scaling) and pass to the limit in order to get P∗. We follow the
construction principles developed in [5, 6, 37] and refer to these papers
for the details.

The model NFPM we use is based upon the models presented in [12,
13, 14, 16] and is composed of three equations describing conservation
of momentum, mass and energy. The flow is defined in Q = Ω× I with
I = (0, T ), T > 0, where Ω ⊂ Rd, d = 2, 3 is an open bounded domain
with a smooth boundary ∂Ω. We’ll be seeking values of temperature θ,
velocity v̄, and pressure p of a dilatable Newtonian fluid (liquid) whose
density ρ and viscosity µ are governed by the constitutive equations

ρ(θ) = ρref(1 − β(θ − θref )) (5)

µ(θ) = µrefe
−γ(θ−θref ) (6)

in which β, γ, ρref , µref > 0. The (porous) medium in which the flow
occurs is characterized by coefficients of permeability K and porosity
α. The specific heat capacity of the fluid is denoted by cfl and that of
the solid’s by csol. The fluid is of thermal conductivity λ (for simplicity
we consider λ constant, but the model might be easily modified in order
to account for the temperature dependence) and heat capacity c(θ) =
cflρ(θ). The total heat capacity of the ensemble of fluid contained in
the medium is equal

b(θ) = ρscsol(1 − α) + c(θ)α (7)

We are also given the gravity acceleration vector ḡ which enters into
the conservation of momentum equation assumed in Darcy’s form as

µ(θ)v̄ + K (∇p + ρḡ) = 0 , in Q. (8)

Alternatively one might consider the momentum conservation laws in
Forchheimer or Navier-Stokes form. However in what follows we deal
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with fissured media where it is customary to assume laminarity of the
filtration occuring in both components of the medium (see [5]).

The continuity equation is

α
∂ρ

∂t
+ ∇ · (ρ(θ)v̄) = 0 , in Q. (9)

In some cases it is convenient to rewrite this equation using ( 5 ) and
A = −αβ as

A
∂θ

∂t
+ ∇ · (ρ(θ)v̄) = 0 , in Q. (10)

the energy equation is of the form

b(θ)
∂θ

∂t
−∇ · (λ∇θ) + c(θ)v̄ · ∇θ = 0 , in Q. (11)

The above conservation ( 8 ), ( 10 ), ( 11 ) and constitutive laws ( 5 ),
( 6 ) when complemented by suitable boundary (for pressure, temper-
ature and velocity) and initial conditions (for temperature) constitute
a well–posed model (see [16]). This model will now be rewritten for
the description of Pε composed of Pf,ε, Pm,ε, Iε i.e. of the ε–problems
defined in fissures and in the matrix with a suitable interface problem,
respectively. The interface conditions in Iε are of the “constant approx-
imation” type (see [11] for general framework of interface conditions)
i.e. they correspond to interaction between blocks and fissures only
through diffusion. We note that appropriate scaling is used, with fac-
tor ε2 for diffusion coefficients in matrix problems and ε−1 in order to
preserve gravity terms in the matrix equations. See [2] for a discussion
of scaling of gravity terms and [5] for general scaling heuristics..

We have the following system:

fissure problem Pf,ε (in Ωf,ε × I)

Af

∂ρf,ε

∂t
+ ∇ · (ρ(θf,ε)v̄f,ε) = 0 (12)

µ(θf,ε)v̄f,ε + Kf (∇pf,ε + ρf,εḡ) = 0(13)

bf (θf,ε)
∂θf,ε

∂t
− ∇ · (λf,ε∇θf,ε)

+ cf(θf,ε)v̄f,ε · ∇θf,ε = 0,(14)
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matrix problem Pm,ε (in Ωm,ε × I)

αm

∂ρm,ε

∂t
+ ε∇ · (ρ(θm,ε)v̄m,ε) = 0 (15)

µ(θm,ε)v̄m,ε + ε Km

(

∇pm,ε +
1

ε
ρm,εḡ

)

= 0(16)

bm(θm,ε)
∂θm,ε

∂t
− ε2 ∇ · (λm,ε∇θm,ε)

+ ε cm(θm,ε)v̄m,ε · ∇θm,ε = 0(17)

interface problem Iε (on Γε × I)

pm,ε = pf,ε (18)

θm,ε = θf,ε (19)

ε v̄m,ε = v̄f,ε (20)

ε2 λm,ε∇θm,ε · η = λf,ε∇θf,ε · η (21)

Our goal now is to determine the equations governing the flow at the
macroscopic level. We shall use the two–scale asymptotic expansion
method (see section ( 2 )) and represent the unknowns describing the
flow as dependent (spacially) on the ”slow scale” corresponding to the
location of the cell in the entire reservoir, and on the ”fast scale” which
is related to the location of the point within the particular cell (see
also the approach in distributed models for fissured media which is
(unformally) consistent with this method e.g. [34, 35, 36]). For •

denoting f or m we pass from x ∈ Ω•,ε to (x, y) ∈ Ω × Ω0.

θ•,ε(x) = θ•,0(x, y) + εθ•,1(x, y) + ε2θ•,2(x, y) + · · · (22)

p•,ε(x) = p•,0(x, y) + εp•,1(x, y) + ε2p•,2(x, y) + · · · (23)

v̄•,ε(x) = v̄•,0(x, y) + εv̄•,1(x, y) + ε2v̄•,2(x, y) + · · · (24)

We also use Taylor expansion for solution dependent coefficients

f(θ•,ε) = f(θ•,0) + εf•,1 + ε2f•,2 + O(ε3)

To obtain the limiting problem P∗ we insert the asymptotic relations
together with consistent rules for derivation (like ( 3 )) into the equa-
tions constituting Pε. We then use averaging over Ω0 and finally get P∗

whose solutions are the first terms of asymptotic expansions. Problem
P∗ is composed of the macroscopic problem Pf,∗ defined for x ∈ Ω and
of Pm,∗ defined for y ∈ Ω0. These two problems are coupled by interface
conditions I∗ defined for s ∈ Γ0 and by the flux memory terms L1, L2
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defined as follows:

L1 =
1

Ω0

∫

Ωm,0

αm

∂θm,0

∂t
dy (25)

L2 =
1

Ω0

∫

Ωm,0

(

bm(θm,0)
∂θm,0

∂t
+ c(θm,0)v̄m,0 · ∇yθm,0

)

dy (26)

Problem Pf,∗ solved for (θf,0, pf,0, V̄0) in Q. with V̄0 = 1
Ω0

∫

Ωf,0
v̄f,0(y)dy

α∗
∂ρf,0

∂t
+ ∇ · (ρ(θf,0)V̄0) = −L1 (27)

µ(θf,0)V̄0 + K∗ (∇pf,0 + ρf,0ḡ) = 0 (28)

b∗(θf,0)
∂θf,0

∂t
− ∇ · (λ∗∇θf,0) + c∗(θf,0)V̄0 · ∇θf,0 = −L2 (29)

Problem Pm,∗ solved for (θm,0, pm,0, v̄m,0) in Ωm,0 × I

αm

∂ρm.0

∂t
+ ∇ · (ρ(θm,0)v̄m,0) = 0 (30)

µ(θm,0)v̄m,0 + Km (∇pm,0 + ρm,0ḡ) = 0 (31)

bm(θm,0)
∂θm,0

∂t
− ∇ · (λm∇θm,0) + cm(θm,0)v̄m,0 · ∇θm,0 = 0. (32)

Problem I∗ on Γ0 × I

θm,0 = θf,0 (33)

pm,0 = pf,0. (34)

Boundary and initial conditions

λ∇θ · η̄ = 0 , on ∂Ω × I (35)

v̄ · η̄ = 0 , on ∂Ω × I (36)

θ(·, 0) = θ0 , in Ω (37)

This is the full (exact) version of the limiting problem P∗ describing
the nonisothermal flow in a fissured medium (NFFM). We note that
it is structurally similar to NFPM. The basic difference, except for
the new (effective) coefficients is in the distributed source (density and
energy)terms on the right hand side of ( 29 ) and ( 27 ). These terms
give rise to memory effects, because they describe mutual interaction
of diffusion in blocks and in fissures: in particular the response of
the blocks to the flow in surrounding fissures affected by values of
quantities describing the flow local to blocks. These response effects
are distributed over the whole reservoir.

Now we discuss the structure of NFFS with respect to the structure of
models describing miscible flows in porous and fissured media (miscible
displacement: MDPM, MDFM, see [3, 5, 15, 4]). There is a significant
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similarity between NFPM and MDPM present in the microscopic mod-
els (i.e. the models for porous media) which is preserved when passing
to modeling of flows in hierarchical porous media (MDFM and NFFM).
In MDPM we deal essentially with three component equations of the
model which describe conservation of mass and of momentum as well
as the balance of mixed concentrations. This structure is similar to the
present case, with the concentration equation MD replaced in our case
by the energy conservation equation. Additionally, the memory terms
in MDFM and NFFM are of a similar form.

However, in DFFM we deal with coupled phenomena of energy and
mass transport, while miscible displacement models describe only the
latter phenomenon. Another essential difference is that of the char-
acter of the flow being described. In MD one has to deal with sharp
concentration fronts and viscous fingering effects that must be cap-
tured by an appropriate numerical procedure. In case of thermal flows
in a broad range of temperature variations the dynamics of changes is
less vivid; however the nonhomogenities of the medium may concern
thermal properties as well as hydraulical ones and consequently NFFM
require some care in analysis and approximation.

In the end let us discuss how the tools developed for the models of
porous media carry over to the models of fissured media. Let us assume
that we are provided with a method suitable for analytic and numerical
treatment of a model describing certain phenomenon arising in porous
media. In general we are not guaranteed that the same method applies
to an analogous model describing the same phenomenon in fissured
media. In case of diffusion i.e. DPM and DFM models, the appplication
of an appropriate semi–discrete approximation method allows for the
consistent treatment of both models (see [28]). In the present case,
i.e., of models NFPM and NFFM, it turns out that if we reduce the
generality of the model NFFM, then the tools developed for the needs
of DFM and NFPM can be combined in order to formulate a convergent
approximation scheme appropriate for NFFM. In the next section we
propose a suitable reduction in generality of the model NFFM.

4. Reduced model

In the previous section we showed the construction of a model NFFM
which described the flow of a fluid through a fissured medium in non-
isothermal conditions. The purpose of the present section is to show
how one can restrict the generality of the model NFFM in order to get
a model which is still adequate for description of a broad subclass of
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problems and which is advantageous from the point of view of analysis
and approximation.

The reduction of the model concerns the microscopic problem ( 30 )–
( 32 ), which in our opinion doesn’t need to be as general as originally
stated. The microscopic problem is defined in a representative block
i.e. in the part where most of the storage of fluid takes place. On
the other hand the block is the ”slow flow” part of the cell: diffusion,
convection and other transport phenomena are very slow with respect
to what is happening in fissures. We propose to ignore the convec-
tion phenomena (the convection term in the energy equation), because
the velocity values (driven by pressure changes) and the temperature
variations OK -0 I’m baxck - window problems - are very small with
respect to the other components of this equation. On the other hand,
if one wants to account for any first-order terms in the block equations,
then the interface conditions should be necessarily modified. Since in
this paper we assumed the approximation–by–constant form of inter-
face coupling, it is consistent to drop the first-order terms in the blocks
equation.

Another simplification of the model arises from a practical observa-
tion. In case of blocks, the value of coeffcient b(·) in the microscopic
energy equation is parametrized by porosity of blocks (see ( 7 )): this
coefficient is the sum of 2 terms, the first one corresponding to the fluid
part and the other to the solid part of the medium. Explicit calculation
shows that for blocks, the proportion between the two components of
this sum doesn’t change much with the fluid’s temperature variations
because the solid fraction dominates the ensemble and the solid’s den-
sity is independent of the temperature. This feature is relative to what
is happening in fissures : the variations of b(·) in fissures with respect
to blocks are proprotional to the ratio between porosities of the porous
medium corresponding to fissures and blocks. This ratio may be typ-
ically of an order of magnitude. This reasoning shows that with not
much error one can approximate b(·) by a constant b̃, which leads to
some considerable simplifications in the model.

Taking into account the proposed simplifications (convection terms

dropped, constant approximation b̃ of b), we rewrite the microscopic
energy equation (which is now decoupled from the other equations) in
the form

b̃m

∂θm,0

∂t
− ∇ · (λm∇θm,0) = 0. (38)
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The microscopic variable θm,0 after this modification is a solution of a
linear equation. Hence, the flux terms L1, L2 in the macroscopic en-
ergy equation can be rewritten according to convolution representation
introduced in the section ( 2 ). Precisely, we define two convolution
kernels τ1, τ2 with τ2 related to solution of ( 38 ) with appropriate unit
initial conditions and homogeneous Dirichlet condition imposed on the
interface Γ0. This construction follows the one of τC,k in section ( 2 )
with C = Ω0, Cin = Ωm,0, k = λm

b̃m
. The kernel τ1 is defined analogously,

with k = 1
Am

. The flux terms L1, L2 can now be represented as

 Li(t, v) = (τi ? v)(t) =
∫ t

0
τi(t − s)v(s)ds , t ∈ I, i = 1, 2, v ∈ L2(I)(39)

i.e. the macroscopic equations are decoupled from explicit dependence
on the microstructure. The values of coefficients as well as of convolu-
tion kernels can be calculated once and be reused in all time steps, when
necessary. Memory effects exhibited by the flow are directly dependent
on the flow dynamics and indirectly on the microstructure dependent
coefficients and function kernels.

We note that the convolution representation provides a common
framework for different types of dynamics of flow in blocks which is
equivalent to different delays in response of the blocks to local varia-
tions in surrounding fissures (see also [18]). The steady flow in blocks
correponds to a nonsingular convolution kernel, and at the two ex-
tremes we have convolution kernels corresponding to “no–flow” and
“dynamic flow” in blocks. The latter is as introduced above, the former
one corresponds to the case when blocks are not porous but imperme-
able hence the whole fissured medium can be treated as an ordinary
porous medium (it is the case of an ordinary diffusion equation with no
delay terms i.e. ”instantaneous reaction”). The figures 1,2 contain re-
sults of a numerical experiment showing the kernels and their influence
on the macroscopic solution. In the figure 1 there are the three curves
drawn which correspond to three different convolution kernels discussed
above: the τ = 0 (instantaneous response: ”no–flow” in blocks case),
nonsingular (”slow–flow” case), and a singular function τ(·) (its values
are calculated for the case of a circular block imbedded in a rectangu-
lar cell and approximated numerically, see section ( 2 )). In the figure
2 the three curves (corresponding to the respective kernels) represent
evolution in time of solution of the problem (temperature) correspond-
ing to different kernels, with an external source present. One notes an
essential difference between graphs corresponding to the singular and
nonsingular cases, and a similarity of the “slow–flow” to the “no–flow”
case.
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5. Appendix

This section contains the technical part of the construction of the
model NFFM by homogenization method, i.e., derivation of P∗ from
Pε. It is a supplement to the content of section ( 3 ), explaining how
one derives Pf,∗, Pm,∗, I∗ from Pf,ε, Pm,ε, Iε. Below we use notation and
relations introduced in section ( 3 ).

First we insert ( 22 ), ( 24 ) and derivation rules into ( 10 ) to get

Af

∂θf,0

∂t
+ εAf

∂θf,1

∂t
+ ε2Af

∂θf,0

∂t
+∇x · [ρf(θf,0)v̄f,0 + ε (ρf (θf,0)v̄f,1 + ρf,1v̄f,0)] +

+∇y ·
[

ε−1ρf (θf,0) v̄f,0 + (ρf (θf,0)v̄f,1 + ρf,1v̄f,0) + ε(ρf (θf,0)v̄f,2

+ ρf,1v̄f,1 + ρf,2v̄f,0)] + O(ε2) = 0

Since this equation must be satisfied for all ε, the sum of terms of equal
powers of ε should vanish. Hence for powers of ε of order −1, 0, 1 we
obtain respectively

∇y · [ρf (θf,0)v̄f,0] = 0 (40)

Af

∂θf,0

∂t
+ ∇x · [ρ(θf,0)v̄f,0] + ∇y · [ρf (θf,0)v̄f,0]

+∇y · ρf (θf,0)v̄f,1 + ρf,1v̄f,0] = 0 (41)

Af

∂θf,1

∂t
+ ∇x [(ρf (θf,0)v̄f,1ρf,1v̄f,0)]

+ ∇y · [ρ(θf,0)v̄f,2ρf,1v̄f,1 − ρf,2v̄f,0] = 0(42)

With this technique we rewrite all model component equations and
compare equal powers of ε to get for the different parts of the model
the following relations

Problem Iε: 0,1 powers

pm,0 = pf,0 (43)

pm,1 = pf,1 (44)

θm,0 = θf,0 (45)

v̄f,0 · η = 0 (46)

v̄f,1 · η = v̄m,0 · η (47)

v̄f,2 · η = v̄m,2 · η (48)

(λf∇xθf,0 + λf∇yθf,1) · η = 0 (49)

λf∇yθf,0 · η = 0 (50)

λf∇xθf,1 · η + λf∇yθf,2 · η = λm∇yθm,0 · η (51)
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Momentum equation for fissures: -1,0 powers

Kf∇ypf,0 = 0 (52)

µ(θf,0)v̄f,0 + Kf [∇xpf,0 + ρ(θf,0)ḡ] + Kf∇ypf,1 = 0 (53)

Energy equation for fissures: -2,-1,0 powers

∇y · (λf∇yθf,0) = 0 (54)

∇x · (λf∇yθf,0) + ∇y · (λf∇xθf,0)

+∇y · (λf∇yθf,1) + +c(θf,0)v̄f,0 · ∇yθf,0 = 0 (55)

bf (θf,0)
∂θf,0

∂t
− ∇y(λf∇yθf,2)

−∇x(λf∇xθf,0) − ∇x(λf∇yθf,1) −∇y(λf∇xθf,1)

+c(θf,0)v̄f,0 · ∇xθf,0 + c(θf,0)v̄f,0 · ∇yθf,1 + c(θf,0)v̄f,1 · ∇yθf,0

+ c1v̄f,0 · ∇yθf,0 = 0 (56)

Now we remark that from ( 52 ) it follows that pf,0 is a function of x

only. Similar corollary follows for θf,0 from ( 54 ) combined with ( 50 ).
As a result ( 55 ) reduces to result

∇y · (λf∇yθf,0) = 0. (57)

Because of the scaling, the structure of equations corresponding to the
matrix part of the problem take a slightly different form

Problem Pm,ε: 0 order terms in ε

Am

∂θm,0

∂t
+ ∇y · [ρ(θm,0)v̄m,0] = 0(58)

µ(θm,0)v̄m,0 + Km [∇ypm,0 − ρ(θm,0)ḡ] = 0(59)

b(θm,0)
∂θm,0

∂t
−∇y · (λm∇yθm,0) + cm(θm,0)v̄m,0 · ∇yθm,0 = 0(60)

The equations that we have obtained are not yet “macroscopic”.
Intuitively, to describe the flow from the “macroscopic” point of view
one has to “average” the relations between variables locally (i.e. over
the cells). In this context we shall use the functions ωC

j , j = 1, . . . d and

the tensor σC defined in the section ( 2 ) for C = Ω0, Cin = Ωm,0, Cout =
Ωf,0. In what follows we drop the superscript C .

With ωj one can observe that their linear combinations with coeffi-

cients
∂θf,0

∂xj
satisfy the equation ( 55 ), and it remains valid if we add to

the product of (ω1, ω2, . . . ωd) · ∇xθf,0 an arbitrary function γ constant
in y (but possibly dependent on x). Hence we set

θf,1 =
d
∑

j=1

ωj

∂θf,0

∂xj

+ γ(x)
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and verify that it satisfies ( 57 ) with ( 51 ). When we take into account
(as discussed above) that

θf,0 = θf,0(x) (61)

then we have

−λf∇yθf,1 · η = λf∇xθf,0 · η.

From ( 61 ), ( 40 ) we get

∇y · v̄f,0 = 0 (62)

and insert it into ( 53 ) differentiated with respect to y–variable which
with ( 46 ) gives the system to be solved for pf,1

∇y · [Kf∇ypf,1] = 0 , y ∈ Ωf,0 (63)

Kf∇ypf,1 · η = −Kf∇xpf,0 · η , s ∈ Γ0 (64)

In analogy with the treatment of θf,1 we write

pf,1 =
d
∑

j=1

ωj

∂pf,0

∂xj

+ ξ(x) (65)

As we see, functions from the family ωj provide a (microstructure–
dependent) skeleton over which we build functions periodic in the “fast”
variable and describing dynamics (by gradient of pf,0 or θf,0) in the
“slow” variable. To obtain the macroscopic description of the flow, we
define

K∗ =
|Ω0

f |

|Ω0|
Kf [δi,j + σi,j] (66)

and we integrate ( 53 ) over Ωf,0, divide the result by |Ω0| (in order to
retain characteristic proportions between cells and fissures) and get

µ(θf,0)V̄0 + K∗ [∇xpf,0 + ρ(θf,0)ḡ] = 0 (67)

with

V̄0 =
1

|Ω0|

∫

Ωf,0

v̄f,0(y)dy

Equation ( 67 ) is a macroscopic form of Darcy’s law decribing the re-
lation between macroscopic seepage velocity V̄0 and pressure gradient
∇xpf,0 quantified with macroscopic permeability coeffcient K∗ (calcu-
lated with the help of microsctructure information.)

In order to get macroscopic relations corresponding to the continuity
and energy equations, we integrate ( 41 ) over Ωf,0, scale the result with



ON A MODEL OF NONISOTHERMAL FLOW THROUGH FISSURED MEDIA21

1
|Ω0|

and get

∇x ·
(

ρf (θf,0)V̄0

)

+ Af

|Ωf,0|

|Ω0|

∂θf,0

∂t

+
1

|Ω0|

∫

Ωf,0

(∇y · ρ(θf,0)v̄f,1) dy +
1

|Ω0|

∫

Ωf,0

(∇y · (ρ1v̄f,0)) dy = 0

But from the divergence theorem, periodicity and ( 46 ) we have
∫

Ωf,0

∇y · [ρ1v̄f,0]dy =
∫

Γ0

ρ1v̄f,0 · ηds = 0, (68)

so the last term in ( 68 ) vanishes. The calculation of the 3’rd term
(with use of the divergence theorem) reveals the coupling with mi-
crostructiure via interface flux conditions, which leads to the memory
effects exhibited by the flow (with ηm outer normal to blocks)
∫

Ωf,0

∇y · ρf (θf,0v̄f,1)dy =
∫

Γ0

ρf,0v̄f,1 · ηds = −
∫

Γ0

ρ(θm,0)v̄m,0 · ηmds

= −
∫

Ωm,0

∇y · ρ(θm,0)v̄m,0dy

=
∫

Ωm,0

Am

∂θm,0

∂t
dy.

Finally, inserting the above formula to ( 68 ) and setting

A∗ = Af

|Ωf,0|

|Ω0|
,

we get

A∗
∂θf,0

∂t
+ ∇x

(

ρ(θf,0V̄0

)

= −
1

|Ω0|

∫

Ωm,0

Am

∂θm,0

∂t
(69)

which is the macroscopic continuity equation.
By a similar technique we obtain the macroscopic energy equation.

We rewrite ( 56 ) using already known relations and get

bf (θf,0)
∂θf,0

∂t
− ∇y (λf∇yθf,2 + λf∇xθf,1)

− ∇x · (λf∇xθf,0) + λf∇yθf,1)

+ c(θf,0)v̄f,0 · (∇xθf,0 + ∇yθf,1) = 0.

Now we integrate as above and in order to calculate the integral of
the last term we couple it with the solution of microscopic problem (as
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before in order to get ( 46 ))

1

|Ω0|

∫

Ωf,0

c(θf,0)v̄f,0 · ∇yθf,1dy

=
c(θf,0)

|Ω0|

∫

Ωf,0

[∇y · (θf,1v̄f,0dy − θf,1∇y · v̄f,0] dy = 0

Now with the second term equal to zero, the divergence theorem and
periodicity yield

∫

Ωf,0

∇y · (θf,1v̄f,0)dy =
∫

Γ0

θf,1v̄f,0 · ηdy = 0.

As a consequence we have

1

|Ω0|

∫

Ωf,0

{

bf(θf,0)
∂θf,0

∂t
−∇y [λf∇yθf,2 + λf∇xθf,1]

}

dy

=
1

|Ω0|

∫

Ωm,0

(b(θm,0
∂θm,0

∂t
+ c(θm,0)v̄m,0 · ∇yθm,0)dy.

Finally, we set b∗(θf,0) = bf (θf,0)
|Ωf,0|

|Ω0|
, define λ∗ on the analogy with

K∗, and get the macroscopic energy equation in the form

b∗(θf,0)
∂θf,0

∂t
− ∇x · (λ∗∇xθf,0)c(θf,0)V̄0 · ∇xθf,0

=
1

|Ω0

∫

Ωm,0

(

b(θm,0)
∂θm,0

∂t
+ c(θm,0)v̄m,0 · ∇yθm,0

)

dy.(70)

In this way we have arrived at the complete model NFFM composed
of macroscopic continuity ( 69 ), momentum ( 67 ), and energy ( 70 )
equations, microscopic conservation equations correspondingly ( 58 ),
( 59 ), ( 60 ) together with interface conditions ( 45 ), ( 43 ) comple-
mented with definitions of coeffcients K∗, A∗, λ∗, b∗ as above.
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