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Abstract
In many applications the models describing evolution phenomena with nonlocal effects
have the form of PDEs with integral memory terms of Volterra convolution type. In this
paper we present an overview of applications and indicate the related analytical and
approximation issues. We show that, from computational point of view, in some cases it
is advantageous to consider some auxiliary problem defined at microscale which is either
imbedded in the definition of the problem or has to be introduced.

1 INTRODUCTION

In this paper we deal with two intersecting topics: memory effects and microscale. We
want to exploit the mutual relation between these two phenomena which frequently are
simultaneously present in a model. The purpose of the paper is expository: we present a
collection of different results and applications from a new perspective. As the topic is very
broad, we will restrict ourselves only to some representative contributions to the field.

We restrict our attention here to the memory effects which arise in evolution equations
and have the form of convolution terms

Q- (u)(t) & Du = /OtT(t — 8)Du(s)ds.

Here u denotes the unknown solution to a differential problem (for convenience we omit
spatial variables), D is a differential operator (in applications D can be the identity
operator, the derivative with respect to the time variable, the Laplacean, or some nonlinear
elliptic operator). The kernel 7 : R — R is fixed for a given application and is typically a
positive nonincreasing function i.e. the value of the integral depends more on the recent
values of u than on the past ones; this property is called fading memory. The function 7
can be bounded or unbounded at the origin; the presence of Q,(u) in an equation affects
its solutions in various ways (see section 2).

By microscale we mean any properties of the medium which are observable at a lower
scale of observation than the macroscopic equation describing the quantity of interest
to us. In numerous phenomena there are multiple scales present (micro, meso, macro,
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giga, ...). Upscaling techniques incorporate the information given on microscale into a
law defined at a higher scale; we will denote this by by m = M. There exists a variety
of upscaling techniques: e.g. the homogenization method, averaging, REV-based methods
used in statistical mechanics, methods of asymptotic analysis. For example, the oscillating
data of a PDE influence that equation at a microscopic scale while the average (in some
sense) of this data enters a (different) PDE at a higher level. In some models we will deal
with the coupling between the two scales i.e. m < M.

In some applications, originally of the form m < M, one can define a function 7 and
decouple the two scales. The macroscopic problem then is modified by the appearance of a
memory term m = 7;7 = M. At first glance the decoupled system seems attractive from
the point of view of analysis and approximation, because when dealing with it we do not
have to resolve the complicated coupling on different scales. This approach, however, is
only partially advantageous because of the computational issues arising in approximation
of memory terms. See below for our model example and later sections 2 and 3 for details. It
turns out then that the coupling with microscale can have some advantages over inclusion
of memory terms.

Extrapolating this idea, suppose we are given a phenomenon governed by an evolution
equation with a memory term 7 < M and that there is no direct relation to any microscale
phenomena. For the reasons indicated above we propose to consider construction of some
(“artificial”) coupling to an auxiliary microscale m = 7 and then study the complexity
of the original problem compared to the one with coupling to microscale, i.e., m < M.

The presentation below starts with a model example. Then in section 2 we discuss
various issues related to the analysis and approximation of the memory terms arising in
evolution equations. In section 3 we discuss why and how to exploit microscale present
in the problem and give a brief review of some models with memory effects and their
location in the framework of this paper.

Let us now present a model example. It comes from the study of (single phase, single
component) fluid flow through a fissured (fractured, double porosity) medium (see [4,8])
and is derived by the homogenization method. The analysis as well as approximation of
the two models as well as of their numerous multiphase and nonlinear extensions have
been extensively studied, see references in [7].

m< M
u— V- (DVu) = gm(z,t), z€Q,t>0,
vi(y,t) = Vy - (dV0®) = 0, y€Q,t >0,
vlr, = wu(x,t), t>0,

1 T
(1) = o [, iy

The domain €2 is the macroscopic domain, e.g., a reservoir where the flow of a fluid of
density u occurs. At each point z € 2 there exists a microscopic domain €2, (a porous
block) where the flow observable at a lower scale (of density v”) occurs. All blocks €2, are
isometric to a certain €. The pair (u, {v*,z € Q}) gives us the full information about
the values of density in the fractures and in the blocks of the fissured medium €2. The
coefficients D, d are the mobility coefficients. The equivalent model with explicit memory
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term has the form

T M
u— V- (DVu) = —u*x71,2 €9Q,

where 7 is obtained from a microscopic block problem

m=7T
re— Vy - (dVyr) = 0,y € Qy,
T|F0 = 1,7“(%0) = Oa Yy € QOa
d 1

) = ———— )dy.
7(t) pTATON Qor(y, )dy

The values of the kernel 7 in the latter system depend only on the shape of €23 and on the
coefficient d. They can be computed analytically for some particular cases or, in a more
general situation, approximated numerically. Once these values have been calculated, the
coupling expressed in the first model by the term ¢y, and boundary values is formally
replaced by the memory term u; x 7. Note that by necessity the function 7 is singular at
the origin.

At first glance the latter model, as a single parabolic integro-differential equation,
seems to be in a more convenient form for mathematical and numerical analysis. Practical
evidence however (see [3,4] and the following papers, references in [7]) suggests that the
former (uncoupled) is more appropriate for applications. This is a typical instance of what
we want to consider in this paper.

2 APPROXIMATION

In this section we want briefly to address the issues that one encounters when dealing
with memory terms present in evolution equations: the qualitative and quantitative effect
upon the solutions; the design of quadrature rules; the complexity of approximation.

We will consider the following typical cases of the convolution kernels, all of them
nonnegative and nonincreasing: (1) trivial; 7(¢) = 0; (2) bounded; for ex. 7(t) = e
(3) unbounded at the origin, L2(0,T) integrable for every T > 0, for ex. 7(t) = t ; (4)
unbounded at the origin, non-L? but L' (0, T) integrable, for ex. 7(t) = %; (5) unbounded
and not integrable near the origin, for ex. 7(t) = }; (6) extreme; 7 = § (Dirac) or 7 = —¢',
“very” singular at the origin.

If the convolution kernel 7 is L'(0,7), then the convolution operator Q, sending a
function u +— 7 % u is linear and continuous on L?(0,T). Additional assumptions on
monotonicity of the kernels imply monotonicity of the operator. More precisely, if 7 is
an integrable nonconstant function with a continuous negative nondecreasing derivative,

then one can prove the following property known as (strong) positivity of the kernel (see

[11])

(u,u* T)p20) > 0,u # 0,u € L*(0, 7).
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This further implies that the operator (I + Q,)! is a contraction (see [8]). Similar as-
sumptions yield another important property (see [15])

1
(, ug * T) 20,1y > —§|u(0)\2, u € L*(0,T).

Monotonicity and related properties are used in analysis of the problems with memory
terms as well as in proofs of the convergence of the applicable numerical algorithms.

Let us go back to the model example from Introduction. Its well-posedness has been
proved with the use of monotonicity techniques mentioned above. The smoothness of
the solutions to it is not essentially affected by the presence of the memory terms be-
cause, without the coupling term (or memory term, respectively), the equations have
purely parabolic character hence “infinite smoothing effects” can be observed. However,
the quantative difference in solutions corresponding to the kernels of different degree of
singularity is important (see [14]).

The situation changes when the type of the equation in which the convolution term
appears is hyperbolic. The results reported in [2] for the visocelasticity models show that
the memory terms contribute to the smoothness of the solutions to these models. This
impact becomes stronger with increasing degree of singularity of the convolution kernel,
which has the meaning of the growing dissipative part of the equation.

The above phenomenon however, does not make the approximation of memory terms
easier as a consequence of increasing degree of singularity of the kernel. The easiest case
here is that of bounded kernels and for those most of the work has been done.

More specifically, we consider approximation of the term Q,(u)(t) at ¢t =ty so that NV
is the number of time steps (of variable or uniform length) that have elapsed. We seek a
quadrature rule in the form

QT(U) (tN) ~ Z wN,k(Du)k.

k=1

In the right rectangular rule, for example, one sets wyx = (t — tk—1)7(tn — tk), (Du)g =
Du(ty). This rule as well as other typical numerical integration methods (rectangular,
trapezoidal) consist in replacing the integrand by its polynomial interpolant. Such an
approach is suitable for smooth kernels but fails to guarantee the stability in case of a sin-
gular 7. The methods proposed recently in [12] and [15], applicable to unbounded kernels,
are based on the product integration method. (see [9]). The idea here is to approximate
only the well behaving part of the product and to integrate exactly the remaining part.
In our case this would be, respectively, Du and 7. Additionally some adjustments must
be made to make the quadrature rule consistent with the discretization of the original
differential equation. One sets then wyy = z—— fi* | [¢¥ 7(ty — s)ds. For the details
(the convergence proof, implementation and applications) see the respective papers.

All of the above mentioned approximation methods have one common characteristic:
the weights wy  have to be recomputed at each time step ¢t = ¢5. This implies further
that we cannot calculate subtotals for the sum and reuse them at later steps. Rather,
we need to store all the information about the “history” of the solution i.e. the values
(Du)1, (Du)sg, ... (Du)y in the computer memory. That issue can be critical: note that
the approximation methods necessary in applications must be combined with some dis-
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cretization in space. Denote by N, the number of nodes of spatial discretization (for
compatibility it can be of order O(N) or O(N?) in the finite element or finite difference
approximation). Then at each time step we need to store vectors of length N,. Remem-
bering the whole “history” requires storing NN, numbers. The order of magnitude of
NN, may be unacceptably large in a given implementation.

The direct approach to this issue by straightforward “cutting off” the “tail” of the
kernel can lead to the loss of accuracy (see [15]). On the other hand, the use of modern
hardware (smart exploitation of different computer memory layers) can help in a particular
implementation. The general and safe way to resolve the storage issue was proposed by
Thomée and coworkers in [18] (see also references in that paper) for bounded kernels and
allows for storing only v/NN,, values of the solution; it is not clear though if that method
would work for singular kernels.

In the following section we propose to exploit microscale in order to resolve that com-
plexity problem.

3 MICROSCALE

In this section we first briefly show how the use of microscale helps in dealing with the
complexity of approximation to the solutions of the model problem. Then we give an
overview of applications and study the particular case of the convolution kernels in the
form of Prony series. This serves as a motivation for a more general approach.

The solutions to the model problem in the form 7 = M can be approximated with the
use of the algorithm suitable for unbounded kernels (see above) which has, however, the
aforementioned drawback of the large storage complexity.

The alternative to the above is given by solving the equivalent problem m & M
where instead of a single memory term one deals with the coupling to microscale. If each
node 1...N, of the macro domain € is associated with a copy of microscopic domain €2,
discretized with Ny nodes, then at each time step we need to store N, values of the
solution to the M problem and Ny N, values associated with the m problems. The key
point is that Ny can be taken relatively small, for example of order 10. Hence, the storage
totals to (Nyg + 1) Np,. This is to be contrasted with the number NN, for the model with
memory term.

The price we pay for the computer storage savings by using the m < M approach is
a much bigger computational effort: in addition to the macroscopic problem one needs
to solve N, microscopic problems at each time step. This overhead can be reduced by
solving the m problems (they are independent of each other) in parallel, The use of
modern computer architectures is then a major advantage.

Let us now turn back to the general case. Table 1 contains a short overview of appli-
cations. The memory terms that arise from microscale are marked with an m in the first
column. For these problems, in case of computer memory storage limitations, one might
try to exploit the microscale and compare the efficiency of the two approaches, m < M
and 7 = M. In other problems the memory terms come from constitutive laws and are
identified from some empiric data. We shall propose a way to deal with it. As a motivation
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application Du type refs
how to find 7

m  single phase flow in fissured medium — uy parabolic 8]
the use of the heat kernel
heat cond. in materials with memory  uy, Au parabolic [13]
constitutive equations
fading memory in viscoelasticity (¢(ug)), hyperbolic  [2]
experimental data fitting

m  homogenization limits of conserv. laws u, Uy, conserv. [16,1]
Young measures laws
nonlocal theory of dispersion/diffusion Au convection—  [5]
nonlocal effects in time/space diffusion
Fourier and Laplace transform
control theory for phase transitions general  Stefan pbm [6]

funct.

Table 1 Applications.

let us consider a class of models of consolidation and creep of clay (see [17]) where the
kernel is sought in the form

K
T(t) =) awe™, g, A >0,
k=1

(i.e. Prony series). This form is justified by the constitutive construction in which the clay
medium behaves like a Hookean spring in series with K Kelvin (i.e. a spring in parallel
to a dash—-pot) bodies. In general many kernels of the fading memory type are expected
to have the form of Prony series, with least-squares fit of the experimental data used to
identify the coefficients.

The consequence of such a special form of the kernel is essential. Each term in Q. (u)(t) =
i ar(Du(e) * e7***)(t) can be seen as qy, times the solution at time ¢ of an ODE with
the stiffness coefficient \; and the right hand side equal to Du(t). Hence, the value of
the memory term can be computed through solutions of these ODEs; their approximation
can be calculated by some discretization method appropriate for ODE. We want then to
exploit the use of Prony series as some approximate representation of 7. In the framework
of this paper that representation can be used to create the coupling with microscale. Mi-
croscale here should be understood as K separate ODEs. Note that these ODEs can be
solved in parallel and that at each time step we need to store only K values of solutions
of ODEs for each point corresponding to the spatial discretization of €2 i.e. we need to
store K N numbers. This quota should be considerably less than NN}, or VNN, storage
necessary in case of other methods, and so the microscale approach identified as Prony
series looks attractive from the practical point of view. This idea requires careful analysis
to be pursued in the forthcoming papers.
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Let us now discuss the potential negative aspects of this approach. These concern mainly
the difficulties with finding a proper Prony series and the stiffness of the system of ODEs.

In general, fitting the given experimental data requires solving a large system of nonlin-
ear equations for (ag, \g)f_ ;. One way to avoid this as well as to decrease the difficulties
with the stiffness of the system of ODEs is by fixing the (A\yz)f_, to be integers from some
interval. Suppose the kernel is L?(0, T') integrable. Then, by the change of variable s = e
the problem of finding LSQ approximation of Y(s) = 7(—1Ins) by a polynomial of the
form P(s) = 3 ,—1 ags™ is well posed. Setting Ay = k we need only to find the coefficients
oy what can be done by a standard LSQ algorithm. Scaling of the variable s = e 0!
can change the range of sought exponents {\;}X_ ;. The set of coefficients provides the
best LSQ fit to the function Y(s) and so there is a continous dependence of the quality of
approximation of 7(¢t) by p(t) = P(e™"); the involved constants can be however potentially
very large.

Another problem is that the Prony series takes a finite value at the origin equal to
p(0) = =K | o4, while in many applications the kernel is unbounded there. However, in
the absence of better methods, the approximation of 7 as Prony series doesn’t seem to be
worse than the application of elementary quadrature schemes to unbounded kernels. The
remaining issue is how to properly treat the case 7 € L', 7 & L2

At the end we want to mention the exact representation of 7 with the use of exponential
terms (see [10]). This is done with the Laplace transform inversion formula

!
2w

(1) / PN,

r
where 7 is the Laplace transform of 7 and I' is some appropriately chosen contour in the
complex plane. That approach leads however to a quadrature formula, hence, does not
resolve the storage complexity problem and cannot be treated as an alternative to the
above framework.
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