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Summary. We consider flow with inertia at porescale and mesoscale and discuss sensi-
tivity of flow results to the functional models and parameters.

1 INTRODUCTION

Until recently, computational modeling of flow in porous media has been constrained
to the scales of physical observation, i.e., to the Darcy scale. In the last decade modeling
of flow and transport phenomena at porescale has become feasible thanks to increases
in computational power and many porescale discrete models such as pore network and
lattice models were constructed.

In this paper we are interested in results of continuum porescale models of flow and
specifically of flow with inertia, and in the sensitivity of mesoscale non-Darcy flow models
to the parameters derived from porescale computations. In particular, we are interested
in anisotropy and in the functional form of non-Darcy model; both are subject of current
research and the topic of various controversies.

In previous work [1, 2, 3] we considered only the Forchheimer model for isotropic
geometries; its upscaling [4] from mesoscale to macroscale and comparison to experiments
[3]. Below we discuss derivation of parameters of a non-Darcy model from porescale and
study sensitivity of that model at mesoscale.

2 PORESCALE TO MESOSCALE

We first provide an illustration of porescale computations. Then we discuss the pa-
rameteres of the upscaled non-Darcy flow model.

In [1, 2] we proposed a numerically sound computational method for computing flow
conductivities from porescale experiments. We have tested the method on synthetic
porescale geometries such as the one shown in Figure 1.

Consider the flow in porescale geometry with a small flow rate; upscaling the results

1



M. Peszynska and A. Trykozko and K. Kennedy

pressure field magnitude of velocity averaging regions

Figure 1: Computational results at porescale and region of upscaling

[5] allows to compute conductivity K or resistivity K−1 in Darcy’s law

K−1u = −∇p. (1)

Computationally, we set up at least two independent experiments l = 1, 2 with general
flow directions independent from one another. We superimpose a mesoscale grid, see the
regions Ωk, k = 1, 2, 3, 4 in Figure 1, and compute averages of pressures and of velocities.
For l = 1 we average the pressures over Ω1∪3 := Ω1 ∪ Ω3 and Ω2∪4 ; this way we get
the first component of the pressure gradient. We proceed similarly for other components
and l = 2. Then we match velocities to pressures and obtain K as the coefficient of
proportionality in (1); details are provided in [1, 2]. The momentum equation (1) must
be complemented by conservation of mass ∇·u = 0 plus appropriate boundary conditions
in order to obtain a solution at mesoscale.

Re(|u(1)|) = 0.1 Re(|u|(2)) = 1 Re(|u|(3)) = 5

Figure 2: Flow at porescale in anisotropic geometry which results in anisotropic diagonal κ. Shown are
three experiments j = 1, 2, 3. Results j = 3 appear unresolved at the grid used; however, this has little
bearing upon averaged results.

Next we extend this idea to flow with inertia. Consider additional experiments num-
bered j = 2, . . . corresponding to increasing flow rates parameterized by Reynolds number
Re. For each j ∈ J we obtain u(j) and the coefficient of proportionality, the resistance
(κ−1)(j). As postulated in [6, 7, 8, 9] and shown by our computational experiments in
Figure 3, the resistance κ−1 increases with flow rates. We seek a functional model for
κ−1(|u|); first we are concerned with a power model and next with anisotropy.
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Figure 3: Fitting κ: linear scale (left) and logarithmic scale (right)

2.1 Fitting results to non-Darcy model with various powers

The scalar non-Darcy model at mesoscale extending (1) is

κ−1(|u|)u = −∇p (2)

where in the scalar case κ−1(|u|) takes one of functional forms

κ−1
1 (|u|) ≈ K−1

1 + β1|u| (3)

κ−1
2 (|u|) ≈ K−1

2 + β2|u|+ γ2|u|2 (4)

κ−1
α (|u|) ≈ K−1

0 + βα|u|α. (5)

At mesoscale we additionally consider

κ−1
2,0(|u|) ≈ K−1

0 + γ2,0|u|2. (6)

We note that (3) is the Forchheimer model [6] and (4), (6) are the cubic models discussed
in [10, 11]. The choice of models is motivated by discussions and controversies brought
up in [10, 12, 11, 13]. See also [8, 14] for (6).

We discuss fitting of (κ−1(|u|))(j) to one of the models above; we use κ−1
m to denote the

highest exponent m in |u|m unless this exponent is sought itself and called α. First, we
generally expect that as |u| → 0, we have κ−1(|u|) → K−1. We assume that it suffices
to take as K the first of the computed values K−1

0 := (κ−1)(1). Next, we observe that
while κ decreases with |u|, the rate of this decrease appears different in two regimes: for
small j and for large j. These regimes are dubbed BEG and END respectively below,
we attempt different fits in each regime.

Results are summarized in Table 1 and illustrated in Figure 3. They generally show
that the Forchheimer model is not a good fit for the entire range j ∈ J, as was discussed
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in [11]. Overall, a better fit is provided with noninteger power α ≈ 1.5 or with separate
models depending on the regime.

model K−1
0 β γ α δ

Component κ−1
11 , value K−1

0 = (κ−1)(1) = 220775
κ−1

1 148566 631759 m=1 0.764550
κ−1

2 214099 228756 168599 m=2 0.642016
κ−1

1,BEG 216648 293008 m=1 0.049507
κ−1

2,END 2279880 -1.1522e+006 385123 m=2 0.181215
κ−1

α 445393 1.47912 0.372862
κ−1

α,BEG 443105 1.47838 0.42205
κ−1

α,END 779032 0.789443 0.062347

Component κ−1
22 , value K−1

0 = (κ−1)(1) = 337925
κ−1

1 226949 1.98132e+006 m=1 0.539661
κ−1

2 253086 1.82059e+006 67243.2 m=2 0.588369
κ−1

1,BEG 326711 1.10484e+006 m=1 0.092334
κ−1

2,END 1090060 1.05541e+006 234183 m=2 0.783017
κ−1

α 1.77981e+006 1.44333 0.359917
κ−1

α,BEG 2.30166e+006 1.49688 0.361737
κ−1

α,END 2.00719e+006 0.947317 0.077736

Table 1: Fitting different models to upscaled results of porescale computations. Last column shows the
maximum relative deviation from the model

2.2 Fitting anisotropic porescale results

The original models [6, 7] dealt with scalar extensions of (1) to (2). Since K is in
general anisotropic, a natural question is how the functional models of κ should account
for anisotropy. See [10, 11] for relevant discussion. Since it may be difficult to get any
inertia parameters and in particular those of any anisotropic models from experiments
[3], we discuss how to get them from computations at porescale.

The algorithm sketched above delivers, in general, four components of the tensor
(κ−1(|u|))(j). Actually, up to computational error, the off-diagonal terms of K and of
κ should be equal since the tensor is expected to be symmetric; this was confirmed in
[2]. Now we assume that the off-diagonal values of κ are negligible; the general case will
be discussed elsewhere. In other words, we assume that the main directions of flow are
aligned with the principal axis of κ. At porescale, we can hypothesize that this is the
case, e.g, for the flow experiment and geometry in Figure 2. Anyway, in this case, to fit
(κ−1(|u|))(j) to |u|(j) it is enough to separate the coordinate directions and fit separately
the κ−1

11 and κ−1
22 components of κ−1.
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Results of fitting are shown in Table 1. They confirm that K11 appears larger than K22

as there is less dissipation along the elliptical lenses than across them. Most importantly,
the results show that an anisotropic model for κ is necessary, albeit a simple one suffices
in this case. We obtain β11 6= β22 in each model. In addition, β11 appears significantly
smaller than β22; this behavior agrees qualtiateively with experimental correlations in
[15].

3 SENSITIVITY OF NON-DARCY MODEL AT MESOSCALE

At mesoscale, a non-Darcy model is cumbersome due to its interesting structure. In
1D, the Forchheimer model (3) can be resolved analytically [4]. However, a general dis-
cretization of (2) in 2D requires two levels of Newton iteration to obtain pressures and
velocities. For some stencils simplified variants exist thanks to iteration-lagging [4] and
allow the inner iteration to be resolved locally. However, not all can be extended to full
anisotropy and general κ. We now have a global inner solver which honors anisotropy and
possibly full tensor; details will be shown elsewhere.

Figure 4: Computational results at mesoscale, heterogeneous 1D case.

Now we discuss the sensitivity of solutions to the parameters of non-Darcy flow. In
general, solutions to PDEs may not be necessarily differentiable with respect to its pa-
rameters. However, in some simple cases one can explicitely compute the sensitivities i.e.
derivatives of the quantity of interest with respect to each parameter.

For example, consider a 1D example of a homogeneous core in which conductivity K is
constant and in which pressure is subject to Dirichlet boundary conditions at x = 0, x = 1.
Consider also the case of a heterogeneous core with conductivities 1, 10−2, 1 assigned each
to 1/3 of the core; see the pressure plots in Figure 4 and the values of fluxes in Table 2
computed for different models of κ and parameter values. For homogeneous K the pressure
solution p(x) = x regardless of functional model. However, u depends on the model. In
some cases it can be computed explicitely [4].

Even if we cannot compute u explicitely, we can formally consider sensitivity of u with
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Figure 5: Computational results at mesoscale (heterogeneous 2D). Top row, from left: conductivity field,
pressure profiles for isotropic Darcy case, and anisotropic Darcy case. Bottom row: pressure profiles for
nonDarcy case. From left: isotropic K and β = [1e2, 1e2], β = [1e1, 1e2], anisotropic β = [1e1, 1e2]

(1) (3) (6) (4) (4) (4) (5)
β = 1e4 β = 0 β = 1e4 β = 1e4 β = 1e4 β = 1e4
γ = 0 γ = 1e4 γ = 1e4 γ = 1e6 γ = 1e8 α = 1.5

Homogeneous K = 1
1.0000 0.0100 0.0457 0.0099 0.0075 0.0021 0.0249

Heterogeneous K = [1, 1e− 2, 1]
0.0268 0.0083 0.0234 0.0083 0.0067 0.0021 0.0169

Table 2: Fluxes for variants of non-Darcy model for homogeneous K and heterogeneous K in 1D. Shown
are the values of fluxes |u| computed for different variants of κ given by (1), (3), (6), (4) with several
parameters, and (5)

respect to parameters. This is done using implicit function theorem. Consider for example
the power model (5) for non-Darcy flow set up as follows, with D in place of ∇p = px

f(u, K, α, β, D) = K−1u + β|u|αu + D = 0 (7)

In order to compute ∂u
∂K

i.e. sensitivity of u with respect to K, we can differentiate (7)

and compute formally ∂f
∂K

. Next we can solve for ∂u
∂K

.
A similar procedure can be followed for sensitivity with respect to β, α. We obtain

∂u

∂K
= u

(
K + K2βαu|u|α−1sgn(u) + K2β|u|α

)−1
, (8)

∂u

∂β
= −u|u|α

(
K−1 + βαu|u|α−1sgn(u) + β|u|α

)−1
, (9)

∂u

∂α
= −βu|u|α ln |u|

(
K−1 + βαu|u|α−1sgn(u) + β|u|α

)−1
. (10)
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These expressions give sensitivities at every point x at which we know u.
We can now analyze qualitative behavior of sensitivities with respect to one parameter

depending on others. In particular, we find that when K increases from 1 to 1e3, sen-
sitivity to β increases somewhat by a small factor ≈ 1.2 while sensitivity to α increases
by a factor of 2. These scaling factors do not depend linearly on the change in K. For
example, if K decreases from 1 to .1, sensitivity to α decreases by a factor of 100, and
the one to β decreases by a factor of 10.

These results are easily explained. When K is small, the flow rates are small and the
value of velocity is relatively insensitive to a particular non-Darcy model. However, for
large K and large flow rates, sensitivity to every parameter is larger.

Finally, we are interested in the profiles of pressures in 2D depending on anisotropic
non-Darcy model; see Figure 5. Overall, it appears that the variations in pressures are
more sensitive to anisotropy than they are to actual values of β. Our other experiences,
also with upscaling of β [4], confirm that pressure solutions and total fluxes do not depend
strongly on a particular value of β, as long as these do not vary more than by several
orders of magnitude.

4 CONCLUSIONS

We have discussed a general methodology to use a virtual computational laboratory
at porescale to compute flow parameters for a model with inertia at mesoscale. We have
shown that the Forchheimer model may not be appropriate for the entire range of flow
rates. However, it appears that the sensitivity of flow results at mesoscale to the choice of
functional model or to its parameters is not strong, at least as compared to its dependence
on conductivities. Further analysis including transport problems in a medium with large
flow rates is underway.

The research of Peszynska and Kennedy was partially supported from NSF grant
0511190 and DOE grant 98089. Peszyńska was also partially supported as the Fulbright
Research Scholar 2009-2010. We used computational facilities at ICM (Sun Constellation
System with AMD Quad-Core Opteron 835X processors) as well as the facilities at Oregon
State University including the COE cluster.
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[4] C.R. Garibotti and M. Peszyńska. Upscaling non-Darcy flow. Transport in Porous
Media, 80:401–430, 2009. published online March 13.

[5] Luc Tartar. Incompressible fluid flow in a porous medium–convergence of the ho-
mogenization process. In Nonhomogeneous media and vibration theory, volume 127
of Lecture Notes in Physics, pages 368–377. Springer-Verlag, Berlin, 1980.

[6] P. Forchheimer. Wasserbewegung durch Boden. Zeit. Ver. Deut. Ing., (45):1781–
1788, 1901.

[7] S. Ergun. Fluid flow through packed columns. Chemical Engineering Progress, 48:89–
94, 1952.

[8] Adrian E. Scheidegger. The physics of flow through porous media. Revised edition.
The Macmillan Co., New York, 1960.

[9] Jacob Bear. Dynamics of Fluids in Porous Media. Dover, New York, 1972.

[10] C. C. Mei and J.-L. Auriault. The effect of weak inertia on flow through a porous
medium. J. Fluid Mech., 222:647–663, 1991.

[11] Tiziana Giorgi. Derivation of Forchheimer law via matched asymptotic expansions.
Transport in Porous Media, 29:191–206, 1997.

[12] M. Fourar, R. Lenormand, M. Karimi-Fard, and R. Horne. Inertia effects in high-
rate flow through heterogeneous porous media. Transport in Porous Media, 60:353–
370(18), September 2005.
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