MTH 420-520 Eigenvalue/eigenvector computations useful in dynamics. EXTRA CREDIT

Assume that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. The goal of this assignment is to understand why the dynamics of an initial value problem for

$$
\begin{equation*}
\frac{d x}{d t}+A x=0 \tag{1}
\end{equation*}
$$

is dramatically different from the dynamics of

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+A x=0 \tag{2}
\end{equation*}
$$

The results of this assignment will be used later when examining the solutions to the heat/diffusion equation $u_{t}-u_{x x}=0$ (which resemble (1) and are dissipative) and to the wave equation $u_{t t}-u_{x x}=0$ (which resemble (2) and are conservative).

Part A. Assume $n=1, x \in R$, and $A>0$ is a constant.
Write out the general solution to (1) and to (2).

> Solution to $(1) x(t)=$
> Solution to $(2) x(t)=$

Part B. Assume $n>1, x \in R^{n}$, and $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Such a matrix is diagonalizable, that is, there is a nonsingular matrix (of eigenvectors) V and a diagonal matrix Λ with the real positive eigenvealues $0<\lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{n}$ being the diagonal elements of Λ, so that we can decompose

$$
\begin{equation*}
A=V \Lambda V^{-1} \tag{3}
\end{equation*}
$$

(In fact, one can prove that for an spd matrix A, the eigenvectors are orthogonal, but this will not be needed here).

To solve (1), we rewrite it (after multiplying through by V^{-1} as

$$
\frac{d V^{-1} x}{d t}=\Lambda\left(V^{-1} x\right)
$$

Now we change variable $w=V^{-1} x$ and solve the system $\frac{d w}{d t}=\Lambda w$ rewritten as

$$
\frac{d w_{j}}{d t}=\lambda_{j} w_{j}
$$

Complete: the general solution $w_{j}(t)$ is,

$$
w_{j}(t)=
$$

After you change the basis from w back to x, the general solution vector $x(t)$ is

$$
x(t)=
$$

Part C. Now we rewite (2) as follows. We introduce a new variable $y=\frac{d x}{d t}=x^{\prime}$ and rewrite the equation (2) as

$$
\frac{d}{d t}\left[\begin{array}{l}
x \tag{4}\\
y
\end{array}\right]=\left[\begin{array}{ll}
& I \\
-A
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=B\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

where the blank space denotes zeros, I denotes the identity matrix of appropriate size, and where B denotes the $2 n \times 2 n$ matrix that arose on the right hand side.

Complete: Assuming that the eigenvalues of A are the positive real numbers $0<$ $\lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{n}$ (as in part B), show that each eigenvalue μ of B is given as $\mu= \pm i \sqrt{\lambda_{j}}$ for some $1 \leq j \leq n$.

