## MTH 420-520 Handout for LAB 4: <br> Minimization of functions, with and without (equality) constraints, and in subspaces

Some facts below need to be completed.
For a function $\phi(x), x \in \mathbb{R}^{n}$, the first variation is

$$
\lim _{t \rightarrow 0} \frac{\phi(x+t y)-\phi(x)}{t} .
$$

Relate to the notion of directional derivative: ...
(I). Minimize $\phi(x)=\frac{1}{2} x^{T} K x-f^{T} x$ over $V=\mathbb{R}^{n}$.

Assume $K \in \mathbb{R}^{n \times n}$ is spd.
Use the first variation to find critical point $x$ for which

$$
y^{T}(K x-f)=0, \quad \forall y \in V
$$

Confirm this point is indeed the minimizer of $\phi(x)$.
Solve $\qquad$
(II). Application: minimize

$$
\phi(x)=\frac{1}{2}\|A x-b\|^{2}, \text { for } x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}
$$

Assume $A$ is full rank and that $m \geq n$.
Find the solution by applying the method in (I).
Solve
(III). Minimize $\phi(x), x \in \mathbb{R}^{n}$ subject to $g(x)=0$.

Set up the Lagrangian

$$
L(x, \lambda)=\phi(x)-\lambda g(x) .
$$

Find the stationary points of $L(\cdot, \cdot)$. Solve
(IV). Minimize $\phi(x)=\frac{1}{2} x^{T} K x-f^{T} x$ over a subspace $W \subset V$. Assume $K \in \mathbb{R}^{n \times n}$ is spd.
Use the first variation to find critical point $x \in W$ for which

$$
y^{T}(K x-f)=0, \quad \forall y \in W
$$

Solve

