
LAB3: Markov Chains, web searches, and PageRank
Additional materials and references are associated with Cleve Moler’s
http://www.mathworks.com/moler/exm/chapters/pagerank.pdf.
You also should have Handout on Markov Chains available from Canvas class website

or form class website.

Students in MTH 420 follow and answer Q1-Q10 for the network A. Next, change p
to be 0.9, and later to p = 0.5. (Produce PageRank and answer Q9 and Q10 for each
case). Repeat PageRank for network C when p=0.5 Extra: work with network B.

Below network A = network from class (Textbook Fig. 2.1, p88). Also, network B = network from Fig. 7.5

in Moler’s paper, which is similar to A (but not identical). We will also call network C = the network from Fig.

7.1 in Moler’s paper.

INSTEAD: Omegas are encouraged to solve Q1-Q10 for network A. Next, identify
some real (but small) web network, for example, Math Department website, and encode
it in a graph and find the page rank of its variants. You can make a lot of assumptions
here, and disregard some of the links and so on. State clearly and describe what you’re
doing.

Hint: many of the answers to Q1-Q10 are clear from the Handout on Markov Chains
(read it carefully). Moler’s paper gives a nice illustration of the whole PageRank idea.

Recall from class that the network A can be encoded in the matrix G ∈ Rn×n, n = 4.
Recall that Gij = 1 if there is an edge to node i from node j.

G =


0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

(1)

Q1: Is G a stochastic matrix according to the handout ?

Now imagine playing a game in which one has to move from a node to a node of the
network at each step, but only along one of the edges that are allowed.

Start by sitting at node 1, and having to move. You have three edges to choose
from (so your destination is node 2, 3, or 4). We can assume each can be chosen with
probability 1/3. Similarly, if you sit at node 2, you can move towards node 3, or 4 only,
so the probability is 1/2.

These probabilities are actually equal 1/cj where cj =
∑

iGij are the column sums.
Now let us record our “state” when moving, in a vector x ∈ Rn. The “state” is a

stochastic vector (see handout) which records the probability that we are at a certain
node.

Start with x0 = [1, 0, 0, 0]T that is, at time t0 we are (certainly) sitting in node 1.
Next we move. Where to ? Well, according to the rules established above, we can
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only go to 2, 3, or 4, so the probability that we are in either one of them is 1/3. So
x1 = [0, 1/3, 1/3, 1/3]T . Notice we could have gotten there by setting x1 = Ax0, where
A is like G except it has 1/3 in the first column wherever G has a 1.

Q2 What if we started at node 2, that is with x0 = [0, 1, 0, 0]T ? Compute x1. Now
you would like to have 1/2 in the second column of G so that x1 = Gx0.

Now we combine the ideas from above and want to have

A0 =


0 0 0 0

1/3 0 0 0
1/3 1/2 0 0
1/3 1/2 1 0

(2)

so that xk+1 = A0xk.

Q3 No matter what you start with, if x0 = e1, what happens after k = 17 steps ?
What if x0 = e2 ?

Q4 Is A0 a stochastic (transition) matrix ? If not, why ? (this explains Q3).

So we need to fix A0 and in fact, we need to fix the entire process of transitions and
“moving” so it will resemble actual web-surfing. It seems reasonable to assume that
once you land in a node from where there are no out-links (like node 4), you just leave
that page to go to any other page (of the four available). In fact, when you sit at any
node at any time, maybe you choose some other link than those listed on that page.
Say, sitting at 2, you can click on links to 3 or 4, but perhaps also you can go to 1 or
you can choose to remain at 2. [Remember that you can always type the URL of any
pages yourself.]

So let us implement these ideas and set up a new “correct” matrix A. Let the proba-
bility that when being in a node (on a page), you actually follow one of the links from
that page, be p (typical value is p = 0.85 or something like that). So the probability
that you choose some other page than these is 1-p, and now we see that the probability
that you choose one of the possible n pages is σ = 1−p

n
. So we set up A as follows

Aij = pGij/cj + σ(3)

That makes sense of course if cj 6= 0. What to do if cj = 0 ?

Q5 Recall to yourself in human language what it means if cj = 0.

If cj = 0, we set up Aij = 1/n for all i and this particular j, because it seems reasonable
that a user would go to any random url possible with equal probability.

Q6 Write out by hand what A is like.

You can automate the process in MATLAB by typing, for a given G, the following
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c = sum(G,1)

k = find(c~=0)

D = sparse(k,k,1./c(k),n,n)

e = ones(n,1)

z = ((1-p)*(c~=0) + (c==0))/n

A = p*G*D+e*z

Or you can do it all by hand . . .

Q7 Is A a stochastic matrix ? Is it a regular stochastic matrix ?

Q8 Perform experiments starting with different x0 of your choice. They can describe
the initial state when you start from a specific node. They can also be any stochastic
vectors.
For each such experiment, perform the operation x=A*x several times which calculates
new elements of the sequence xk+1 = Axk.
What do you think is the limit of this process? Does the limit (call it x∗) depend on
what you started with ?

Q9 The limit x∗ discussed in Q8 is the steady-state vector described in the handout.
Interpret the equation it has to satisfy using eigenvalues and eigenvectors.

Q10 Verify in MATLAB that your interpretation from Q9 is the same as the limit
you found in Q8. (Remember this vector has to be a stochastic vector.

SUMMARY: the vector x∗ you found in Q8 and Q10 is the Google Page Rank of
the network we discussed. Read Moler’s paper for more information.

Extra: experiment with the code pagerank code which is part of the EXM collection
provided by Cleve Moler at
http://www.mathworks.com/moler/exm/chapters.html

Report on what you have learned and on anything else related to this project.


