
LAB4: Minimization in Inner Product spaces and under con-
straints. Best approximations and projections

All students do A, B, D or more if you wish. Extra can be substituted
for the “regular” parts of any problem.

Recall that an orthogonal basis is one where 〈wi, wj〉 = 0 for each pair of
basis vectors/functions wi, wj . An orthonormal basis is an orthogonal one
in which in addition the vectors/functions have unit length.

(A) Consider the function φ : R2 → R defined as

φ(x) :=
1

2
xTKx.

where K is the matrix from LAB1, problem (B), with spring constants
c1 = 1, c2 = 1, c3 = 1, and no gravity), subject to

g(x) = −x1 + x2 − 1 = 0.

The constraint can be interpreted as requiring a fixed distance between the
masses.
(i) Find the minimum of φ(x) subject to g(x) = 0.
(ii) Draw the contour plots of φ, and plot the constraint.

You will likely use Lagrange multipliers. The mysterious λ should be
interpreted as follows: it is a proportionality constant between the vectors
∇φ(x) and ∇g(x) which must be parallel !

(iii) Plot these two gradient vectors on the same plot as (ii) to illustrate
how the Lagrange multiplier works.

Extra: Find the minimum of φ(x) given above subject to being on a
limacon (see LAB 2). Demonstrate graphically as above. Hmm. There may
be a nonlinear problem to solve. Do your best to try and/or ask me how.

(B) Now consider a revised version of the example from class. Let V =
R2, v∗ = [1,−2]T , and let W = span{[1,−1]T } be a subspace of V .

Find the best approximation w∗ to v∗ in the subspace W , i.e., the mini-
mizer of the function

φ(w) :=
1

2
‖ w − v∗ ‖2 .(1)

Solve it “by hand” following the example in class.
Now develop the general methodology, along the following steps.

(i) Denote by A = [1,−1]T the 2× 1 matrix whose column space (the set of
vectors spanned by its columns) is exactly W .
(ii) Now write w∗ = Aα, i.e., w is parametrized and uniquely identified by
the (scalar) α. Rewrite the definition of

φ(w) = φ(α) =
1

2
‖ Aα− v∗ ‖2 .

(iii) Now solve the minimization problem as in II in handout and tell me
which equation you must solve to find α.
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(iv) Now develop a more general theory. Since we said that w∗ is the pro-
jection of v∗ onto W , we can write w∗ = PW v

∗. Please write this projection
matrix PW in terms of matrix A. (Pay attention to the dimensions, singu-
larity etc. of the matrices that form PW ).

PW = . . .

Extra: Now solve the same problem using IV from Handout. Recall you
must have that all vectors in W must be orthogonal to the residual. Could it
be that it is sufficient that the columns of A are orthogonal to the residual?
You could also solve this problem using III from Handout.

(C) Extend the previous problem. Let V = R3, take v∗ = [1, 1, 1]T , and
W = span{[1, 0, 0]T , [0, 1, 1]T }.
(i) Confirm that the two vectors form an orthogonal basis for W .
(ii) Find the projection w∗ of v∗ onto W , that is, its best approximation in
the subspace W ∗.
(iii) Find the projection matrix PW .

(D) Consider the vector space V = C[−1, 1] and W = P2[−1, 1], the
subspace of polynomials of degree less than or equal 2 over the interval
[−1, 1]. Recall that V is an inner product space with the inner product

〈f, g〉 =
∫ 1
−1 f(x)g(x)dx.

A good basis for P2(−1, 1) is {1, x, x2}.
(i) Show that this basis is not orthogonal. Correct it by changing the last
basis function to 1− ax2 with a chosen so you get the orthogonality.
(ii) Find the coefficients of expansion for f(x) = 1−x+6x2 in the orthogonal
basis.
(iv) Now consider a function f(x) = x4 which is in V but not in W . Find
its projection f∗ onto W (i.e., the best approximation to W ). Plot f(x) and
the approximation f∗(x).
Extra: can you identify the projection operator analogous to the projection
matrix from the previous problems?

Integrals can be computed by hand or using MATLAB functions, for ex-
ample quad. See the following example or use doc quad

%-- put this in an M-file

function y = myfun(x)

y = sin(pi*x).*sin(2*pi*x);

%--

%-- now compute the integral over (-1,1)

quad(@myfun,-1,1)

%

% or you can quickly code it as an inline function

myf = @(x)(sin(pi*x).*sin(2*pi*x));

quad(myf,-1,1)


