
MMAM (MTH 420/520) LAB5: Fourier series and analysis

All students in MTH 420 turn in A,B, and one of C or D (or both)

Fourier series on the interval (−L,L) for a function f(x) is the series

F (x) =
a0
2

+
∞∑
n=1

an cos(
nπ

L
x) +

∞∑
n=1

bn sin(
nπ

L
x).(1)

Recall that the coefficients are given by

an =
1

L

∫ L

−L
f(x) cos(

nπ

L
x)dx, n = 0, 1, . . . bn =

1

L

∫ L

−L
f(x) sin(

nπ

L
x)dx, n = 1, 2, . . . .

Here are some clues on the behavior of Fourier series:

• A function that is smooth and has smooth derivatives has a Fourier series that converges
uniformly. (A Fourier series that has terms O( 1

n2 ) converges uniformly because the terms
can be bounded by an absolutely convergent series of numbers).
• A function that is only piecewise continuous converges at its points of discontinuity to the

average value between the left and right limits. (Such a function cannot have a uniformly
convergent Fourier series. In particular, a series that has terms which are O( 1

n) does not
converge uniformly.)
• The phenomenon when the Fourier series oscillates near the discontinuity of the original

function is called Gibbs phenomenon. Identify it when it occurs.

Watch the demonstration on how to construct Fourier series in MATLAB. We will use

the Fourier series for the square wave function on (−π, π)

f0(x) =

{
1, 0 < x

−1, x < 0
≈ F0(x) =

∞∑
n odd

4

nπ
sin(nx)

You can run lab5fourier(3,pi) to see N = 3 terms of the series F0(x) for f0(x) over (0, pi).
(Next try N = 5, N = 15 etc.)

(A) Match a given function fj(x) with one of Fk(x), on (−π, π), by experimenting. Provide
evidence, discuss, but be concise (No more than 2 pages and 6 graphs on this project).

(f1) f(x) = x
(f2) f(x) = e−|x|

(f3) f(x) = π2x− x3
(f4) f(x) = sin2(x)

(f5) f(x) =


1, 0 < x < π/2

−1, −π/2 < x < 0

0, π/2 < |x| < π

(f6) f(x) = x2

(F1) F (x) = 1
2 −

cos(2x)
2

(F2) F (x) = π2

3 + 4
∑
n

(−1)n
n2 cos(nx)

(F3) F (x) = eπ−1
πeπ + 2

πeπ

∑
n

1
n2=1 (eπ − (−1)n) cos(nx)

(F4) F (x) = 2
∑
n

(−1)n+1

n sin(nx)
(F5) F (x) = 2

π

∑
n

1
n (1− cos(nπ2 )) sin(nx)

(F6) F (x) = 12
∑
n

(−1)n+1

n3 sin(nx)

IDEAS FOR EXPERIMENTING: First, pick j = 1, . . . 6 and plot the given function fj(x)
on [−π, π]. What are its properties: (i) is it even, odd, or neither. (If even, use cosine series only.
If odd, use sine series). (ii) Is the function continuous ? Is its derivative continuous ? (If smooth,
use a series with high order of n in the coefficients. If not, use one with the smaller degree). (iii)
Pick a k, and plot the first partial sums of Fourier series Fk(x) to get an idea how the Fourier series
behaves. Now you can identify fj with one of Fk using the clues above (they are not rigorously
written) and/or from the plots.
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(B) For the function f0 and its Fourier series F0, give your opinion on how well the Fourier series
F0 with just a few N terms approximates f0. In particular, compare their values of f0 and F0 at
x = 0, 0.1, 0.5, 1 depending on how many terms N you use. Now this may not be a fair comparison
because from theory it is known that the “approximation” by Fourier series is optimal only in the
Least Squares sense! Collect the information about LSQ error depending on the number of terms
N for N = 2, 4, 6, 8, 10. What do you think?

Extra: repeat for f2 and its Fourier series that you found in (A).

(C) Now we follow the ideas developped in the handout and solve the heat/diffusion equation
with the Fourier series.

ut − uxx = 0, x ∈ (0, 1), t > 0(2)

with the initial condition u(x, 0) = u0(x) = 1, and the boundary conditions u(0, t) = 0 = u(1, t) = 0
(L = 1). Run lab5fourier heat(20,1,0.1) to animate the solution until t = 0.1, using N = 20
terms, with L = 1.

• The operator K = − d2

dx2
, with zero Dirichlet boundary conditions, has the eigenvalues

λn = (nπ)2, and it has the eigenfunctions sin(nπx).
• With the information about eigenvalues and eigenfunctions we can “diagonalize” K.
• We write u0 in the Fourier basis, that is

u0(x) = 1 =

∞∑
n=1,odd

4

nπ
sin(nπx).

That is, the Fourier coefficients are an = 0,∀n, and bn = 4
nπ , for n odd, and bn = 0, for

n even. (To be precise, these are Fourier coefficients for the odd extension of u0(x) from
(0, 1) to (−1, 1).)
• The solution to the heat equation (2) can be shown to be equal to

u(x, t) =
∞∑

n odd

e−λntbn sin(nπx) =
∞∑

n odd

e−(nπ)
2t 4

nπ
sin(nπx)(3)

Use the demo to animate your approximation to u(x, t) at t = 0, t = 0.01, t = 0.1. (You can use
as many terms of the Fourier series as you wish, but state how many you are using). (Do not turn
in the plots, save the trees).

(i) Discuss the behavior. Find tSTOP for which the maximum u(x, tSTOP ) on the interval x ∈
(0, 1) is above 0.7 and below 0.8. Report the value tSTOP that you found and how you
found it.

(ii) Now write the solution when u0(x) = sin(πx) + 0.5sin(3πx). (Hint: write what bn and an
are, then identify the corresponding λn. Next use (3) to write

u(x, t) =

Extra: implement these in the code, and plot the solution when t=0.1.

(D) The wave equation can also be solved with Fourier series. lab5fourier wave(20,1,5)

animates the vibrating spring until t = 5, using N = 20 terms, with L = 1.
As you can see, the code simply lets the function (vibrating string)

u(x, t) = cos(πt) sin(πx) + 0.5 cos(3πt) sin(3πx)

come to life. Show that this function satisfies

utt = c2uxx,(4)

for some c. What c? What are the two boundary conditions and the two initial conditions that
u(x, t) satisfies that you would need to solve the problem? For what t does the string have the
same position as initially?


