MMAM (MTH 420/520) LAB5: Fourier series and analysis. EXTRA
$(\mathbf{E}=$ EXTRA $)$ Following the handout, the solution to $\frac{d x}{d t}+K x=0$ in R^{N}, with $x(0)=x_{0}$, can be constructed knowing the eigenvalues and eigenvectors of K. We can write the solution concisely using the "matrix exponential"

$$
\exp (-K t)=V \exp (-\Lambda t) V^{-1}=V\left[\begin{array}{ccc}
\exp \left(-\lambda_{1} t\right) & & \tag{1}\\
& \exp \left(-\lambda_{2} t\right) & \\
\cdots & & \exp \left(-\lambda_{n} t\right)
\end{array}\right] V^{-1}
$$

Recall that the steps are

- Diagonalize $K=V \Lambda V^{-1}$ where Λ is the diagonal matrix of eigenvalues, and V is the matrix of eigenvectors. Change the variables to $w=V^{-1} x$ and derive the equation $\frac{d w}{d t}+\Lambda w=0$
- Write out the initial condition x_{0} in the new basis as $w_{0}=V^{-1} x_{0}$
- Solve for w
- Transform back to get $x(t)=V w(t)$
- (Identify the matrix exponential in the solution, $\left.\exp (K t)=V \exp (\Lambda t) V^{-1}\right)$.

In summary, the solution is $x(t)=\exp (-K t) x_{0}$.
Follow the process above for the matrix $K=[2,-1 ;-1,2]$, and $x_{0}=[1,-1]^{T}$.

