MTH 420/520/Peszynska. Midterm 2, Spring 2016

NAME:

Please show all relevant work to get full credit. Please show all steps of work by hand.
(1) (5 points) Write the Euler-Lagrange equations which help to find the minimizer of $\phi(u)=$ $\int_{0}^{1}\left(\frac{1}{2}\left(u^{\prime}(x)\right)^{2}-e^{x} u(x)\right) d x$ satisfying $u(0)=0=u(1)$. Solve them.
(2) (5 points) Write the Euler-Lagrange equations which help to find the minimizer of $\phi(u)=$ $\int_{0}^{1} \frac{1}{2}\left(\left(u^{\prime}(x)\right)^{2}+3(u(x))^{2}\right) d x$ satisfying $u(0)=0=u(1)$. Solve them.
(3) Find the function(s) $u(x)$ and the numbers λ satisfying

$$
\begin{align*}
-u^{\prime \prime}(x) & =\lambda u(x), x \in(0, \pi) \tag{1}\\
u^{\prime}(0) & =0, u(\pi)=0 . \tag{2}
\end{align*}
$$

Note: there are many such numbers and many such functions. We are not interested here in the trivial solution $u(x)=0$.
(4) (5 points) (A) Given $k>0$, for what c does the function $u(x, t)=\exp (-c t) \sin (5 \pi x)$ satisfy the heat equation $u_{t}-k u_{x x}=0$ for $x \in(0,1)$ and $t>0$?
(B) What boundary conditions and initial condition does this solution satisfy? Describe the physical meaning of these initial and boundary conditions for the heat equation.
(C) Given (A-B), conjecture what would be the solution $v(x, t)$ if the initial condition was $v(x, 0)=\sin (10 \pi x)$.
(D) Now that you have $u(x, t)$ and $v(x, t)$, verify that every linear combination $w(x, t)=$ $a u(x, t)+b v(x, t)$ (for any two constants $a, b \in \mathbb{R}$) satisfies the heat equation $w_{t}-k w_{x x}=0$, with the same boundary conditions. (This property is called linearity).

