Linear Algebra Review Sheet for MTH 451/551

Instructions: The concepts below are crucial for your understanding of the material in MTH 451-551. Most of them were covered in the prerequisite class MTH 341 and/or in the recommended class MTH 342. Please practice !!!
You can come to Linear Algebra Clinic Mondays 5:00pm- in my office (weeks 2, 3, 4).

1. Complex numbers: arithmetics, conjugate, modulus, Euler formula

Find $\bar{z},|z|, z_{1}+z_{2}, z_{1} z_{2}$, for $z=2-3 i, z_{1}=5, z_{2}=-4+\sqrt{2} i, \operatorname{Arg}(z), \operatorname{Arg}\left(z_{1}\right), \operatorname{Arg}\left(z_{2}\right)$.
2. Vectors: linear independence, basis, linear span of vectors, dimension, change of basis; orthogonal set of vectors; orthonormal set of vectors; Gram-Schmidt orthogonalization.

Consider $u=[1,2,0]^{T}, v=[-1,0,5]^{T}$. Check if (u, v) are linearly independent, orthogonal, orthonormal. Find a third vector w if possible so that (u, v, w) is a basis for \mathbb{R}^{3}. Write $a=[2,0,-5]^{T}$ in this basis. Can you find a vector \tilde{v} so that (u, \tilde{v}) is an orthogonal (orthonormal) set (an orthogonal set spanning $\operatorname{Col}(u, \tilde{v}))$? Repeat for $(u, \tilde{v}, \tilde{w})$ for some \tilde{w} that you would determine. Is it possible to do this for $(u, \tilde{v}, a, \tilde{w})$?
3. Rectangular complex matrices: $\operatorname{Col}(A), \operatorname{Range}(A), \operatorname{Ker}(A), N u l l(A), A^{T}, A^{*}, A^{*} A$. Linear solvable systems, underdetermined and overdetermined systems.

Work with $A=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, and $A=\left[\begin{array}{lll}i & 0 & 1 \\ 0 & 1 & 0\end{array}\right], B=A^{T}, C=A^{*}$, and various submatrices and modifications of your choice of A, B, C.
4. Square matrices: singular, invertible; determinants; inverse matrix. Orthogonal matrix, unitary matrix.

Work with
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], A=\left[\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right], A=\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]$,
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right], A=\left[\begin{array}{cc}i & 1 \\ -i & 1\end{array}\right], A=\left[\begin{array}{cc}i & 0 \\ 0 & 1\end{array}\right] . A=\left[\begin{array}{cc}i & i \\ -i & i\end{array}\right], A=\left[\begin{array}{cc}i & i \\ -i & 0\end{array}\right]$.
5. Eigenvalue problem: find eigenvalues and eigenvectors. Diagonalizable matrices. Algebraic multiplicity and geometric multiplicity of an eigenvalue. Orthogonally (unitarily) diagonalizable matrices.

Use examples as in 4.

