
MTH 451-551, Fall 2017, Assignment 3. Each problem is worth 10 points.

Instructions: Please write neatly. A summary of calculations in 1) will suffice. Underline
the major steps and calculations rather than engage in reporting tedious arithmetic. Other
instructions for code etc as in Assignment 2.

Extra credit is turned in on separate paper.

Consider the matrix A =

1 1 1
0 0 r
0 r 0
r 0 0

 in which r ∈ R is some parameter.

(Do not turn in) For an exercise, set r = 1, and find the orthogonal basis for Col(A)
using the classical Gram-Schmidt algorithm and the modified Gram-Schmidt algorithm (call
it cGS and mGS, respectively). Document your steps and write out the QR decomposition of
A. You can check your answer using the code in Pbm 2.

1. Now set r = ε in A, with ε so small that ε2 ≈ εmachine. (This means that, e.g., (*) when

computing 1 + ε2 in MATLAB you will get 1. However, when computing
√

2ε2 you should
get
√

2|ε|.)
Apply cGS and mGS to A by hand calculation, “pretending” you are a computer (i.e., that

(*) applies). Your results should show the loss of orthogonality in Q when calculated with
cGS, but which does not arise in mGS. (In particular, check if q2 · q3 = 0.)
Hint: the loss of precision of cGS is due to the strong dependence of cGS on the accuracy of
the many many steps; mGS is less sensitive (more stable). In particular, watch out for r23.

2. (Computational). The (very naive) code below realizes cGS on the matrix A from
problem 1 and shows the loss of orthogonality.

>> r=1e6*eps; a=[1 1 1; 0 0 r; 0 r 0; r 0 0];

>> a1=a(:,1);a2=a(:,2);a3=a(:,3);

>> r11=norm(a1);q1=a1/r11

>> r12=a2’*q1;q2=a2-r12*q1

>> r22=norm(q2);q2=q2/r22

>> r13=a3’*q1;r23=a3’*q2;q3=a3-r13*q1-r23*q2

>> r33=norm(q3);q3=q3/r33

>> q3’*q2

a) (451-551) Modify the code above to execute mGS (show the code). Comment on any
difference with respect to the results obtained with cGS.

(551 students) should write a proper loop such as that in Algorithm 7.1 on p51 in textbook.
b) Apply QR decomposition to the matrix from (1) in MATLAB using the qr function. Do

you see any loss of orthogonality, i.e., is Q′∗Q = I?? Is QR = A to the desired accuracy? Are
you satisfied with the accuracy and orthogonality? If yes, that is because the QR algorithm
in MATLAB uses a numerically stable Householder procedure rather than cGS or mGS.

1

