MTH 451-551, Fall 2017, Assignment 4. Each problem is worth 5 points.

Instructions: Please write neatly. Instructions for code etc as in Assignment 2.
Extra credit is turned in on separate paper. (You can do 3-4 in python).

1. Suppose A is a non-singular $m \times m$ matrix with $\|A\|_{2}=10$, and $\|A\|_{F}=11$. Give the sharpest possible bound on the condition number $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$. Hint: Lecture 5 contains a theorem that will help you.
(451 students can assume $m=2017$.)
Provide an example of such a matrix.
2. Find the condition number and the relative condition number for evaluation of $f(x)=$ $x_{1}^{2}+A x_{2}^{2}$, where $x=\left[x_{1}, x_{2}\right]^{T}$. (451 solve this with $A=1,551$ use $\left.A=5\right)$. Extra credit: consider any $A \geq 1$ or any $0<A \leq 1$.
3. (Computational) Consider the polynomial (a) $p(x)=(x-3)^{7}$. Write it in the form (b) $p(x)=x^{7}+a_{6} x^{6}+\ldots a_{0}$. Use MATLAB to plot $p(x)$ with $x \in[2.9,3.1]$, and at least 100 points. Use the form a), and the form (b). Discuss your observations in the context of round-off error and stability of computer arithmetic.
4. (Computational). It is known that $e=\sum_{k=0}^{\infty} \frac{1}{k!}$.
a) Write a loop that will attempt to evaluate e by summing the finite number N of the terms of the series, from $k=0$ to N. (Evaluate k ! by multiplication.) Compare the solution with the value of $e=\exp (1)$ provided by MATLAB. Try several values of N.
b) Compare the result of a) with that when summing from $k=N$ to $k=0$.
c) Now decide which N to use based on the value of the summand. N should be the smallest index k for which $\frac{1}{k!}<\varepsilon_{\text {machine }}$. Repeat a) and b).
(551) Discuss the above in view of Lecture 15 (see problem 15.1.e).
