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Introduction and Overview
These notes are intended to . . . . . . . . . . . .supplement rather than replace any
textbook material or material covered in lectures.
Examples will be worked out in class.
I will use material from several references

[RJL]. R.J. LeVeque, Finite Difference Methods for ODEs and
PDEs, SIAM 2007

[AP] U. Ascher, L. Petzold, SIAM 1998

[Stro] S. Strogatz, Nonlinear Dynamics and Chaos, 1994

[SH] Stuart and Humphries, Dynamical Systems and Numerical
Analysis, Cambridge, 1996

The purpose ... (by Richard Hamming)

”The purpose of computing is insight, not numbers”

”The purpose of analysis is to solve problems, not create pretty
theorems”
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ODE types

u′(t) = f(t, u), t ∈ I = [t0, T ], u : I → Rn (1)

1 Higher order ODEs can be converted to (1)

IVP: supplement (1) with u(t0) = u0.
For higher order ODEs, need data u′(t0) = . . ..

BVP for e.g, u′′ = f(t, u), require u(a) = ua, u(b) = ub.

2 Does the solution exist? Is it unique? How does it depend on its
data (f , u0)? Is the problem well-posed?

3 What is the qualitative nature of solutions? (Stability, growth.
For systems (n > 1): equilibria. Behavior near equilibria. )

4 Answers to 2-3 depend on the properties of f(·, ·): (non)linearity,
smoothness, bounds on f, fu

5 Numerical methods have to honor 3.
Suggested review/reading: solving separable ODEs, bounding of functions,

direction fields, phase plane, pendulum example
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Well-posedness = E/U & continuous dependence
Consider a general IVP for (1), D := {(t, u) : t ∈ [0, T ], ||u− u0 || ≤ γ}.

Well-posedness for general nonlinear f

1 Require f continuous on D, with M = supD ||f(t, u) ||
2 Require f Lipschitz continuous in u on D
∃L ≥ 0: ||f(t, u)− f(t, v) || ≤ L ||u− v || , ∀u, v, t ∈ D.

If fu bounded, use L = supD ||fu(t, u) ||
If f defined piecewise, take maximum of fu over the pieces

3 From 1-2 obtain (local) E/U for 0 ≤ t ≤ min(T, γ/M).
4 Sometimes D = [0, T ]× R. Then E/U holds on [0, T ].
5 Sometimes f and fu continuous in the interior of D. Then

local E/U holds.
6 For linear IVP u′ = A(t)u+ g(t) with continuous A(t), g(t),

we have global E/U, i.e., with T =∞.

For a given f , identify D so that conditions 1-2 hold
(or 4, or 5, or 6)

Ex. of Lipschitz continuity, local only existence, and non-uniqueness.

4 / 80



Lectures 1-3 Interlude 4-6 7-10 11-13 14-15 16-18 19-end

Examples

y′ = 3y and y′ = −3y

y′ = cos(t)y + t2 and u′ = −tu and y′ = cos(y)

u′ = u2 and u′ =
√
u

y′ = y(1− y) (autonomous, two equilibria)

y′ = −5ty2 + 5
t −

1
t2
, y(1) = 1.

y′ = −100(y− sin(t)), y(0) = 1 (stiff: large initial transient)

pendulum θ̈ + sin(θ) = 0

oscillator ẋ = y, ẏ = −x (eigenvalues?)

van der Pol ẋ = y, ẏ = −x+ y(1− x2)

multi-body (or molecular dynamics) r̈ = f(t), with
f = −∇V (r(t)), here r(t) ∈ RN × R3

ut − uxx = 0 (with homogeneous DBC) discretized with FD
in space gives U ′ +AU = 0, with a large spd matrix A

ut + ux = 0 discretized with FD/FV in space (or
F-transformed) gives U ′ = AU ; A large with complex
eigenvalues
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Continuous dependence & stability

Consider u′ = f(t, u), u(0) = uo and û′ = f̂(t, û), û(0) = ûo

Theorem 1.1 (Continuous dependence)

With notation from the E/U slide, we have a continuous dependence

on the perturbation to initial data and perturbation f̂ to f :

||u(t)− û(t) || ≤ eLt ||u(0)− û(0) || +
supD ||f − f̂ ||

L
(eLT − 1) (2)

Stability for IVP

Solution u(t) to (1) is stable if
||u(0)− û(0) || ≤ δ implies ||u(t)− û(t) || ≤ ε, for t > 0.

Ex.: consider the linearized problem u′ = λu which is stable if, e.g., Re(λ) ≤ 0.
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Basic numerical analysis (FD for ODEs)

Goal: find uh such that uj = uh(tj) ≈ u(tj). Analyze & control the error.

Need an algorithm for uh

Approximate u′(x) ≈ Dhu(x) and analyse the error a-priori
depending on u; e.g. Dhu(x)− f ′(x) = O(hα).

Example 1.2

FE: u′(t) ≈ u(t+h)−u(t)
h . Explicit uj = uj−1 + hf(tj−1, uj−1)

BE: u′(t) ≈ u(t)−u(t−h)
h . Implicit uj = uj−1 + hf(tj , uj)

How large is the error uh − u?

In one step (FE, BE) we make O(h) local truncation error.
(This is a-priori analysis)
How does it accumulate in uh − u? (stability?)
How to estimate the error a-posteriori without knowing u?
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FE example
function FEerr = FEerrexample(h)

%% set up function

f=@(t,y)(-t.*y);

uexact = @(t)(5*exp(-t.^2/2));

%% set up discretization

T=10;tsteps=(0:h:T)’;n=length(tsteps);

%% the numerical solution will be in vector uh

uh = 0*tsteps;

%% initial condition

uh(1)=uexact(0);

%% time stepping loop

for j=2:n, uh(j)=uh(j-1)+h*f(tsteps(j-1),uh(j-1));end;

%% plot the numerical and exact solutions

plot(tsteps,uexact(tsteps),’-’,tsteps,uh,’*’);legend(’exact’,’FE’);

title(sprintf(’Solution with dt=%g’,h));

%% calculate error

FEerr = norm(uh-uexact(tsteps),inf);

8 / 80



Lectures 1-3 Interlude 4-6 7-10 11-13 14-15 16-18 19-end

Results of FE convergence analysis

>> for j=1:5, h(j)=10^(-j);e(j)=FEerr(h(j));end

>> loglog(h,h,’k-’,h,e,’r*-’);grid on

>> title(’Error of FE’);legend(’linear’,’e(h)’);

>> print -dpng errorh.png

>> for j=2:5, alpha(j)=(log(e(j))-log(e(j-1)))/(log(h(j))-log(h(j-1)));end

>> format long; alpha

>> polyfit(h,e,2)

h e(h) α
0.1 0.1207867637

0.01 0.011560975 1.019
0.001 0.001150700 1.002

0.0001 0.000115016 1.0002
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More on the error in numerical solution to ODEs
What about other sources of error?

The main error contribution in numerical methods for ODEs is
discretization error = local truncation error + its accumulation

We generally hope not to run into roundoff error. But ...

FE and other explicit methods require only function evaluations

BE and other implicit methods require nonlinear solvers, e.g.,
simple (Picard) iteration, Newton’s method.
If solved only to certain tolerance, further error incurs.

Systems of ODEs (may) require linear solvers.
This might contribute additional source of error.

Error u− uh is not all! Many flavors of
::::::::::
numerical

::::::::
stability

First, we constrain h to limit the LTE & its propagation.

Second, we address the qualitative nature of uh and u.

We will frequently consider the test equation u′ = λu to test (linear)

stability of a numerical method. 10 / 80
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The next few slides provide general remarks on testing
algorithms, notation, and some new material on solving implicit
schemes.
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Algorithms and code must be tested!. How?

Remark 1 (Numerical methods are created because we
cannot find (analytical) (true) solutions to (most) problems.)

This is an issue for testing ,.

Example 2.1 (First workaround: manufacture problems)

Assume you know u(t), calculate u′(t). Propose some f(t, u) = u′(t).

Example 2.2 (Second workaround: use refined grid solution)

Consider uhvery fine
calculated with your own scheme, and hvery fine

at least one or two orders of magnitude smaller than h you test.
Or, consider some other highly accurate well-known scheme as a
proxy for u(t).

Remark 2 (When implementing a new (or a known) scheme,
you must also test your implementation.)

Test always. Test frequently.
Search literature to find analytical solutions for challenging examples.
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Notation in FD (finite differences)

Remark 3 (Notation in FD for IVP, and for one independent variable)

So far we have denoted the time steps tj = hj, j = 0, 1, . . . and uj ≈ u(tj). The
collection of (uj)j forms the approximation uh to u. ([RJL, Chap 1-2])

Important: the grid function uh is not defined at every t

When plotting numerical approximation, e.g., in MATLAB, we see,
however, a line joining uj and uj+1 etc. which leads some to believe that
uh is a piecewise linear interpolant of (uj)j , and a function of t

This is not true: one could define many functions based on the same
collection of values (uj)j . Other methods than FD such as Finite Elements

make a distinction.

Remark 4 (More than one independent variable)

It is customary [RJL, Chap 5-10] to denote the grid as follows

in space by superscripts xj , j = 1, . . .M with Uj ≈ uj = u(xj)

in time tn, n = 0, 1, . . . N with superscripts Un ≈ un = u(tn)
Clearly Un has to be distinguished from the n′th power of U !!!

For PDEs, we will use Unj ≈ unj = u(xj , tn)

It is common to denote the spatial step by h and the time step by τ,∆t or
by k [RJL, Chap 5-10]. We will use h instead of k so we can use uh not uk
as the grid function.
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Notation on error and on systems

Definition 2.3

The error in FD for an IVP is En = Un − u(tn) ; we test maxn ||En || .

Typically, ||En || increases with n; we frequently only consider ||En || at tn = T .

Remark 5 (Calculating error for a system of ODEs)

When u(t) ∈ Rd, e.g., in the oscillator example, we write

u′(t) =

[
x(t)
y(t)

]′
=

[
0 1
−1 0

] [
x(t)
y(t)

]
= Au (3)

with an orthogonal matrix A. The numerical solution
Un = [xn, yn]T ≈ un can be found, and the error is measured with a
norm || · || on Rd of our choice. See [RJL, Appendix A].
The most common norms are the p-norms, and p = 2 is the usual Euclidean norm

For d = 1 the p norms reduce to | · |.
Ex.: Calculate || [−i, 5]T ||2. Show ||A ||2 = 1.
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How to solve implicit schemes, e.g., BE
Recall FE scheme

uj = uj−1 + hf(tj−1, uj−1). (4)

For every j we can calculate uj explicitly from the right hand side.
However, BE scheme

uj = uj−1 + hf(tj , uj), (5)

unless f is linear in u, cannot be solved explicitly for uj . The scheme
is called implicit, and (5) is solved by iteration for uj .

There is no general direct way to solve nonlinear algebraic
problems

We can only use iterative methods such as simple (fixed-point,
Picard) iteration or Newton’s method, which are not guaranteed
to converge

Any iterative scheme converges only up to a certain tolerance.
This produces an additional error in uh at every time step tj .
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Solving an implicit scheme by iteration
We consider two types of solvers: fixed point and Newton iteration.

At every time step j start with an initial guess u
(0)
j .

A good initial guess is provided by the previous time step value, so you can

set u
(0)
j = uj−1. But other possibilities, e.g., by extrapolation, may be better

Then iterate u
(0)
j , u

(1)
j , . . . , u

(k)
j , . . . until done.

“Done” means that the tolerance criteria are met.

Sometimes iteration does not converge, or does not make
much progress towards convergence. For ODE schemes, this
means that a smaller time step h should be considered.
For scalar problems, fixed iteration should be set-up to
converge in 10-20 iterations. Newton’s method should not
take more than 5-10. Setting up the maximum number of
iterations prevents the code from useless cycles which make
no progress.

Fixed point iteration requires function evaluations, and Newton’s
method requires evaluations of a function (residual) and of its
derivative (Jacobian).
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Solving implicit schemes by fixed point iteration
(Notation as from slide 7)

Solving (5): find uj as the fixed point of v = g(v)

Here g(v) := uj−1 + hf(tj , v).

Iteration proposes new guesses v(1), v(2), . . . from

v(k+1) = g(v(k)), k = 0, 1, . . . (6)

1 The iteration converges if g(·) is a contraction (i.e., its Lipschitz constant
Lg < 1); this will always work of course, if f is Lipschitz, and h is small
enough

2 The convergence is only linear, but implementation is easy.

3 “Done”: stop, e.g., if ||v(k) − g(v(k)) || is small enough.

Example 2.4 (Find small enough time step for u′ = sin(5u) solved with
BE and fixed point)

The scheme reads uj = uj−1 + h sin(5uj), thus we iterate u
(k+1)
j = g(u

(k)
j ) , where

g(v) = uj−1 + h sin(5v). We calculate Lipschitz constant Lg = supv |g′(v) |= 5h.

To ensure Lg < 1, we require h < 1
5

.
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Solving implicit schemes by Newton’s method

Solve (5): find uj as the zero of G(v) = 0.

Here G(v) := v − g(v) = v − uj−1 − hf(tj , v).

To solve G(v) = 0, at each iteration k = 0, 1, . . ., we linearize

G(v(k+1)) ≈ G(v(k)) + (v(k+1) − v(k))DG|v(k)s(k) = 0.

Rearranging, we solve for the correction (step) s(k) = v(k) − v(k+1) the
equation

DG|v(k)s(k) = G(v(k)) (7)

and then update v(k+1) = v(k) − s(k).
The Jacobian DG|v(k) and the residual G(v(k)) are evaluated at every
iteration; (7) is solvable as long as DG is nonsingular.
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Newton’s method, cd.

1 Newton’s iteration converges if (i) the initial guess v(0) is close to the true
solution, and if (ii) G(·) and DG are smooth enough, and if (iii) DG is never
singular (for scalar problems, this means DG 6= 0).

2 Newton’s iteration converges very fast when close to the root, but may
diverge. Newton’s method is more expensive than fixed point.

3 Iteration may stop, e.g., if ||G(v(k)) || is small enough.
Some variants of Newton’s method bypass the need to evaluate the Jacobian
at every iteration

Example 2.5 (Find h so that the Newton’s step for BE and u′ = sin(5u)
is guaranteed to be solvable)

The scheme reads uj = uj−1 + h sin(5uj), thus we iterate G(u
(k+1)
j ) = 0 , where

G(v) = v − uj−1 − h sin(5v). To ensure G′(v) = 1 + 5h cos(v) 6= 0, we require

|5h cos(v) |< 1, or h < 1
5

, same as in Ex. 2.4.
This bound is sufficient for the solvability of the Newton step and may not be
necessary. At the same time this bound does not guarantee that Newton iteration
will converge for any initial guess!
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Code for BE: fixed point or Newton
f = @(t,u)(u.^2); fprime = @(t,u)(2*u);

%% stoppping criteria for nonlinear solver

atol = 1e-12;

if choice ==1, method= ’Picard’; maxit = 20; else method = ’Newton’; maxit=10; end

%%

for j=1:n

%% initial guess

guess = yi(j); iter = 0;

%% iterate by Picard or Newton

while 1

if choice == 1 %% fixed point=Picard

%% evaluate g(guess)=uprevious+hf(guess), check residual size, and continue

gval = yi(j)+h*f(tsteps(j+1),guess);

resnorm = abs(guess-gval);

newguess = gval;

else %% Newton

%% evaluate G(guess) = uguess - g(guess), g as in Picard

gval = yi(j)+h*f(tsteps(j+1),guess);

res = guess - gval; jac = 1 - h*fprime(tsteps(j+1),guess);

resnorm = abs(res);

newguess = guess - jac \ res;

end

if resnorm<atol, guess = newguess;break;

elseif iter>maxit, error (’ no convergence for method= ’,method);

else iter = iter+1; guess = newguess;end

end

maxiter = max(maxiter,iter);

aveiter = aveiter + iter;

yi (j+1) = guess;

end

...
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The next few pages summarize theory of consistency for FD schemes.
In the first part of the class we study consistency of schemes, i.e., the
order of LTE.

Definition 3.1

A FD scheme is consistent if the LTE is at least O(h).

Later we study stability, which measures how the error
propagates and accumulates, from step to step.
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Truncation error

Definition 3.2 (Local Truncation Error (LTE))

Informally, truncation error is what remains after you plug in the true
solution to the FD scheme, apply Taylor’s expansions, and the ODE.

Make sure you calculate LTE using the form of the scheme resembling u′ = f(t, u)

rather than some other algebraically equivalent form.

Example 3.3 (Find τ=LTE for FE; see (4))

Scheme Un+1−Un

h
= f(tn, Un) . Plug in

u(tn+1)−u(tn)

h
= f(tn, u(tn)) + τ .

Apply Taylor expansions u(tn+1) = u(tn) + hu′(tn) + h2

2
u′′(tn) + . . .

Cancel terms with u′(tn) = f(tn, u(tn)). Conclude τ = O(h) .

Remark 6 (LTE occurs at every step, and it will accumulate.)

We will study the notion(s) of . . . . . . . . . .numerical . . . . . . . .stability of schemes which
controls how the error accumulates, and prevents catastrophic and
pathological accumulation.
Repeat Ex. 3.3 for BE, trapezoidal, and midpoint methods. Choose the

point for Taylor expansions carefully.
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Higher order approximations to u′(t)
Example 3.4 (Symmetric second order approximation to u′(t))

Average D+
h u =

u(t+h)−u(t)
h

and D−h u =
u(t)−u(t−h)

h
; D0

hu =
u(t+h)−u(t−h)

2h
.

Check accuracy: assume smoothness and Taylor-expand

u(t+ h) = u(t) + hu′(t) + h2/2u′′(t) + h3/6u(iii)(t) + . . . (8)

u(t− h) = u(t)− hu′(t) + h2/2u′′(t)− h3/6u(iii)(t) + . . . (9)

Subtract (9) from (8) to check that u′(t)−D0
hu(t) = O(h2). . . . . . . . . . . .(Midpoint . . .or . . . . . . . . . .leapfrog)

General idea: use Taylor expansions in an organized way [RJL,p7]

To get a method of order p, we typically need p+ 1 points in a stencil for the
difference approximation. We Taylor expand each, and find how to mix and match
these so that the terms of order up to O(hp) to cancel. . . . . . . . . .(Method. . .of. . . . . . . . . . . . . . .undetermined

. . . . . . . . . . . .coefficients)

Example 3.5 (One-sided forward second order approximation to u′(t))

Use u(t), u(t+ h), u(t+ 2h), each Taylor expanded about u(t). Combine them in

Donesided,fh u(t) =
au(t+2h)+bu(t+h)+cu(t)

h
. Write down a system of equations, and

solve for a, b, c so that Donesided,fh u(t)− u′(t) = O(h2). (Find
a = −1/2, b = 2, c = −3/2.) 24 / 80
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Another way to get higher order approximations
General technique: Richardson extrapolation

Given an exact value I, its approximation Ih which is O(hp) accurate, i.e.,
E(h) = I − Ih = O(hp) = Chp +O(hp+1), produce a new scheme which is
O(hp+1) accurate by

:::
step

:::::::
doubling Inewh = 2pIh − I2h, with Enewh = O(hp+1).

Example 3.6 (One sided forward second order approximation to u′(t))

Use FE approximation to I = u′(t) ≈ Ih = D+
h u =

u(t+h)−u(t)
h

with

E(h) = Ch+O(h2), so p = 1.

Calculate Dnewh u = 2D+
h u−D

+
2hu =

−u(t+2h)+4u(t+h)−3u(t)
2h

, and Enewh = O(h2).

Compare with Ex. 3.5 to see Dnewh = Donesided,fh

Example 3.7 (One sided backward second order approximation to u′(t))

We can either follow Ex. 3.5 or Ex. 3.6, or simply replace h by −h̃. (Check the
analysis with Taylor!). We obtain, after replacing h by h̃ again

Donesided,bh u(t) =
3u(t)− 4u(t− h) + u(t− 2h)

2h
≈ u′(t) +O(h2) (10)

Ex.: Construct fourth order accurate symmetric and one-sided

approximation to u′(t)
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Use higher order approximations to u′(t)
in FD . . . . . . . . . .multistep schemes for ODE u′(t) = f(t, u(t))

Example 3.8 (Leapfrog D0
hu, as in Ex. 3.4)

Recall D0
hu = u(t+h)−u(t−h)

2h ≈ u′(t) +O(h2) = f(t, u(t)) +O(h2).

The . . . . . . . .leapfrog. . . . . . . .scheme Un+1−Un−1

2h = f(tn, U
n) is explicit.

Example 3.9 (One-sided forward second order, Ex. 3.5 & 3.6)

Recall Donesided,f
h u(t) = −u(t+2h)+4u(t+h)−3u(t)

2h ≈ u′(t) +O(h2)

The scheme −U
n+2+4Un+1−3Un

2h = f(tn, U
n) is explicit.

Example 3.10 (One-sided backward second order; Ex. 3.7)

Recall Donesided,b
h u(t) = 3u(t)−4u(t−h)+u(t−2h)

2h ≈ u′(t) +O(h2)

The scheme 3Un+2−4Un+1+Un

2h = f(tn+2, U
n+2) is implicit.

Equivalently, 3Un+1−4Un+Un−1

2h = f(tn+1, U
n+1) [RJL,Sec.5.3] ( . . . . .BDF)
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Another idea: sample f in a better way

Integrate u′(t) = f(t, u(t)) over (tn, tn+1) to obtain

u(tn+1) = u(tn) +

∫ tn+1

tn

f(s, u(s))ds. (11)

Approximate (11) with numerical integration . . . . . . . . . . . . .(quadrature) =⇒ FD schemes.

Example 3.11 (FE and BE: left/right rectangular rule)

(FE) : Un+1 = Un + hf(tn, U
n) (12)

(BE) : Un+1 = Un + hf(tn+1, U
n+1) (13)

Example 3.12 (Crank-Nic(h)olson/trapezoidal & midpoint)

Un+1 = Un +
h

2

(
f(tn, U

n) + f(tn+1, U
n+1)

)
(14)

Un+1 = Un + hf(tn+1/2, U
n+1/2) (15)

The value Un+1/2 in (15) is cumbersome. More on this later.
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Another way to get higher order

Break-up the evaluation of
∫ tn+1

tn
f(s, u(s))ds into stages over

(tn, tn+1) while keeping the approximation to u′(t) simple.

This idea yields the family of Runge-Kutta methods.

Example 3.13 (2-stage explicit RK [RJL, p125] . . . . . . . . . . .(improved . . . . . . .Euler))

Obtained by calculating Ûn+1/2 with FE in half-step, and applying midpoint
scheme (15) over (tn, tn+1), with Ûn+1/2 instead of Un+1/2.

Ûn+1/2 = Un +
h

2
f(tn, U

n);Un+1 = Un + hf(tn+1/2, Û
n+1/2) (16)

Example 3.14 (2-stage explicit RK [RJL, p125] . . . . . .(Heun. . . . . . . . . .method))

Obtained by calculating Ûn+1 with FE, and applying trapezoidal scheme (14)

over (tn, tn+1), with Ûn+1 instead of Un+1.

Ûn+1 = Un + hf(tn, U
n);Un+1 = Un +

h

2

(
f(tn, U

n) + f(tn+1, Û
n+1)

)
(17)

Find formally the LTE of the improved Euler and Heun methods.
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Runge-Kutta methods and Butcher tableaus

Each RK method of r stages can be associated a diagram called
Butcher tableau [RJL, p127]), with numbers ci, bj , aij with
i = 1, . . . r, j = 1, . . . r.

stage i : Yi = Un + h
∑
j

aijf(tn + cjh, Yj) (18a)

when done Un+1 = Un + h
∑
j

bjf(tn + cjh, Yj) (18b)

The stages are implicit if aij 6= 0 for some j ≥ i

From the tableau you can quickly check the consistency
conditions

for LTE to be at least O(h):
∑
j aij = cj ,

∑
j bj = 1

for LTE to be at least O(h2):
∑
j bjcj = 1/2

... further ... for higher order

Further use of tableaus is to encode embedded methods which
help to estimate and control the error
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Butcher tableaus for Runge-Kutta methods

Definition 3.15

c1 a11 a12 . . .
c2 a21 s22 . . .
. . . . . .
cr ar1 ar2 . . .

b1 b2 . . . br

Tableau corresponds to

Yi = Un + h
∑
j

aijf(tn + cjh, Yj)

...

Un+1 = Un + h
∑
j

bjf(tn + cjh, Yj)

Example 3.16

Produce tableaus for FE, BE, Heun (17), modified Euler (16).

Tableau for the 4-stage explicit RK is

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

.

Ex.: Practice producing Butcher Tableaus and unscrambling them
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Yet another way to get higher order

Evaluate
∫ tn+1

tn
f(s, u(s))ds by approximating f(s, u(s)) by a

polynomial based on (old) time step values, and integrating
the polynomial exactly.

This yields the family of (explicit) Adams-Bashforth methods. While
formally single-step, they use old time step values.

Example 3.17 (2-step Adams-Bashforth [RJL, p132])

Obtained by calculating the exact integral of linear polynomial p1(t)
based on Un+1, Un. More precisely, this polynomial uses
f(tn+1, U

n+1) and f(tn, U
n) to approximate f(t, u(t)) on (tn+1, tn+2).

Un+2 = Un+1 +
h

2

(
−f(tn, U

n) + 3f(tn+1, U
n+1)

)
(19)

Ex.: derive (19). Derive higher order schemes with p2(t), etc.
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Yet another way to get higher order

Evaluate
∫ tn+1

tn
f(s, u(s))ds by approximating f(s, u(s)) by a

polynomial based on old and new time step values.

This yields the family of (implicit) Adams-Moulton methods.

Example 3.18 (1-step Moulton ≡ trapezoidal scheme)

Obtain (14) by calculating an exact integral of the linear polynomial
p1(t) drawn from f(tn, U

n), f(tn+1, U
n+1).

Example 3.19 (2-step Moulton)

Use p2(t) based on f(tn, U
n), f(tn+1, U

n+1), f(tn+2, U
n+2).

Un+2 = Un+1 +
h

12

(
−f(tn, U

n) + 8f(tn+1, U
n+1) + 5f(tn+2, U

n+2)
)

(20)

Ex.: derive (20)
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Last but not least: predictor-corrector schemes

Powerful heuristic schemes “predict” with an explicit
step, and “correct” by plugging in the “predicted”
value in another scheme, originally implicit.

This method avoids iteration needed in an implicit scheme, and maintains the

same order of the error as the corrector scheme, as long as the guess provided is

sufficiently accurate.

Example 3.20 (Predict with AB-1 (FE), correct with
AM-1 (Trapz))

The resulting scheme is the same as Heun method (17).

Remark 7

If other errors due to the discretization of PDE, round-off, or
solver, are an issue, the corrector equation may be iterated.
Suggest a predictor for the Nyström rule

Un+2 = Un + h
3

(
f(Un) + 4f(Un+1) + f(Un+2)

)
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Other use of predictor-corrector: error estimates

Example 3.21 (Continue (3.20))

Since the Heun method is of second order, and its first stage
(FE) is of first order, we can subtract Ûn+1 − Un+1 to estimate
the error.
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Recap

Above we studied consistency ... and quantified the LTE
error make in each time step of a scheme.

Now we need to discuss how this error propagates, so that a scheme is
convergent.

Definition 4.1

A FD scheme for a well-posed IVP (1), with f, u0 satisfying
conditions for well-posedness, is convergent if

lim
h→0,hN=T

UN = u(tN ). (21)

We expect limh→0 maxn:hn≤T ||Un − u(tn) || = 0 as long as the pbm is well posed

on (0, tn).
To prove convergence, we will require consistency and more.
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Proof of convergence, FE

Theorem 4.2 (FE is convergent, if u′′ is bounded.)

Proof. Consider FE first as in Ex. 3.3. Subtract the expression for the LTE from the scheme,
somewhat rearranged, and with Def. 2.3, to get

E
n

= E
n−1

+ h(f(tn−1, U
n−1

)− f(tn−1, u(tn−1))− hτn (22)

Next take norms, exploiting Lipschitz property of f , and estimating the terms on the rhs from
above, and grouping terms.

||En || ≤||En−1 || + hL ||Un−1 − u(tn−1) || + h ||τn || = (1 + hL) ||En−1 || + h ||τn || .

By recursion we get ||En || ≤ (1 + hL)n ||E0 || + h
∑n−1

j=0 (1 + hL)n−j ||τj || . Now E0 = 0, and

assuming u′′ is bounded we have maxn ||τn || = O(h). We proceed in one of two ways.

(a) The Bernoulli inequality gives (1 + hL)n ≤ eLhn = eLT . Since ||τj || = O(h), we have

||En || ≤ h
n−1∑
j=0

(1+hL)
n−j ||τj || ≤ hmax

j
||τj || (1+hL)

n
n ≤ TeLT

O(h)→ 0.
eLT − 1

L
O(h)→ 0.

(b) A slightly more careful estimate, by summing the geometric series gives

h

n−1∑
j=0

(1 + hL)
n−j ||τj || ≤ hmax

j
||τj ||

n−1∑
j=0

(1 + hL)
n−j

= hmax
j
||τj ||

1− (1 + hL)n

1− (1 + hL)
≤ hmax

j
||τj ||

eLT − 1

hL
=
eLT − 1

L
O(h)→ 0. (23)

and the theorem is proved.
Ex.: carry out the proof for the simpler case when L = 0 36 / 80
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Convergence for BE

For BE, we derive

||En || (1− hL) ≤||En−1 || + h ||τn || (24)

and proceed as for FE.

The catch is that ...

... instead of (1 + hL) we deal with 1
1−hL

. To make sure this is a positive number, we require

hL < 1. Then of course 1
1−hL

> 1. Don’t worry however, since as h→ 0, the number

1
1−hL

→ 1, thus it makes sense to try to assume some upper bound. For example, if we

restrict h to be small enough so that hL < 1
2

, we can use 1
1−hL

≤ 2.

You can proceed first with (a) as in proof for FE. Next, try (b).

Ex.: Complete the proof of convergence of BE.

Ex.: Carry out the proof for the trapezoidal method.
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How to prove convergence
of a general scheme of higher order?

You can’t, without making assumptions how the scheme
“accumulates” the error!

The property of some schemes to NOT accumulate and propagate
error in an uncontrolled or pathological way is called

Stability
We will discuss various notions of stability

For convergence, we require . . . .zero. . . . . . . . .stability
Use f = 0, don’t allow any growth!

For convergent schemes, to ensure “nice behavior”, we require

:::::::
absolute

::::::::
stability,

:::::::::::
A-stability,

:::::::::::::
L-stability,. . .

Use f = λu, require qualitative agreement of the scheme with the ODE.

If λ is large, do not restrict h unduly.
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Zero-stability when u′ = f = 0
Any useful scheme should be zero-stable, i.e., with a small
perturbation to the initial data, should not produce large errors.

Example 4.3 (Example 6.2 from [RJL])

Consider the difference scheme Un+2 − 3Un+1 + 2Un = 0, and use
U0 = 0, U1 = h. After N = 20 steps with h = 1

N
, we have a disaster: UN ≈ 104!

Example 4.4 (Consider Donesided,fh )

Construct an appropriate scheme, and test it similarly as in Ex. 4.3.

The examples above are pessimistic: we used FE and BE with
success! These are, however, single-step schemes, which do not require
any additional starting values which might cause a headache.

Example 4.5 (Recall BDF from Ex.3.10)

Follow examples before with 3Un+2 − 4Un+1 + Un = 0. No problem!
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How to test zero-stability of LMM? (u′ = 0)
LMM = “linear multistep methods”. Here

∑r
j=0 αjU

n+j = 0.

Remark 8 (Solving homogeneous linear ODE with constant

coefficients
∑r
j=0 αju

(j) = 0. )

Recall the Ansatz (guess) u(t) = ekt. Substitute, and derive an
equation for k:

∑r
j=0 αj(k)j = 0. Find the roots k1, . . . kr. If no

repeated roots, a general solution is the linear combination of ekjt. If
root kl is repeated (once), augment the solution by teklt; etc...

Remark 9 (Solving homogeneous linear difference equation

with constant coefficients
∑r
j=0 αjU

n+j = 0. )

Guess U j = ekhj = (ekh)j = (ξ)j, substitute, and derive an equation
for ξ:

∑r
j=0 αj(ξ)

j+n = 0. Find the roots ξ1, . . . ξr. If no repeated
roots, a general solution Un is the linear combination of (ξj)

n. If the
root ξl is repeated, use also n(ξl)

n.

Note: we use parentheses in (ξ)n to help distinguish it from Un.
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Definition 4.6 (Root condition)

A polynomial in ξ satisfies . . . .root . . . . . . . . . .condition if all of its roots ξj
satisfy |ξj |≤ 1, and if those with |ξj |= 1 are not repeated.

Lemma 4.7 (Zero-stability of LMM is guaranteed if the

polynomial ρ(ξ) =
∑

j αj(ξ)
j satisfies the root

condition.)

Example 4.8 (FE, BE, leapfrog, and Ex. 4.3–4.5)

For FE, and BE, ρ(ξ) = ξ − 1, with only one root ξ1 = 1. For leapfrog,
ρ(ξ) = ξ2 − 1, with two non-repeated roots ξ1/2 = ±1. For the schemes in
Ex. 4.3–4.4 we find some roots ξ with |ξ |> 1. In turn, in Ex. 4.5 we get that the
root condition holds!

Example 4.9 (Adams methods Un+r − Un+r−1 = 0)

Here ρ(ξ) = ξ − 1, with only one root ξ1 = 1.

Practice verifying the root condition for various schemes including AB,

AM, Nystrom, ...
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Dahlquist theorem

Theorem 4.10 (Dahlquist, for LMM)

Consistency & zero-stability ≡ convergence.

Proof. Use Frobenius companion matrix related to the LMM, and its
norm when the root condition holds. (Show stability is sufficient for
convergence) . . . Show stability is necessary for convergence ...
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Absolute stability: use test equation u′ = λu
Even with zero-stable schemes, we have to be careful with
the choice of time step h so that the error is not excessively
large. (Denote hλ = z from now on).

We study regions of absolute stability studying the test equation u′ = λu. If

z = hλ are inside of the stability region, the error behaves nicely.

First, consider a single step scheme for the test equation
Un+1−Un

h = . . ., where the right-hand side contains various terms
depending on how f is sampled. After we substitute f(t, u) = λu, and

rearrange, we can rewrite the scheme as Un+1 = R(z)Un.

Definition 5.1 (Region of absolute stability, single step
scheme)

. . . is the set RABS of z ∈ C for which |R(z) |≤ 1.

Example 5.2 (Absolute stability for FE and BE)

We have Un+1 = (1 + z)Un in FE. Thus R(z) = 1 + z. Similarly, for BE we derive
R(z) = 1

1−z . Next we solve the inequality |R(z) |≤ 1. (See below in Ex. 5.4..5.5)
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Absolute stability: use u′ = λu and LMM

Write LMM for the test equation

r∑
j=0

αjU
n+j = h

r∑
j=0

βjλU
n+j = z

r∑
j=0

βjU
n+j . (25)

We consider now the polynomial π(z; ξ) = ρ(ξ)− zσ(ξ) =
∑r
j=0(αj − zβj)(ξ)j

parametrized by z. For a given z, we check if it satisfies the root condition. If yes,

no excessive growth should occur. The roots of course depend on z = hλ.

Definition 5.3 (Region of absolute stability for LMM)

. . . is the set RABS of z ∈ C for which the roots of the polynomial
π(z; ξ) satisfy the root condition in Def. 4.6.

Many simple single step schemes such as FE and BE are LMM. Many are not ...
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Absolute stability regions

Remark 10 (Notation on complex numbers)

Ba(r) = {z ∈ C :|z − a |≤ r} is the closed ball with center a and
radius r. Numbers C 3 z = x+ iy = (x, y); <z = x; =z = y are the

real and imaginary parts of z. Modulus |z |=
√
x2 + y2.

For a given scheme with the corresponding polynomial π(z; ξ), the
goal is to find RABS . See examples in [RJL, Ex.7.4-7.7]

Example 5.4 (FE; ρ(ξ) = ξ − 1, σ(ξ) = 1)

Calculate πFE(z; ξ) = ξ − (1 + z) with root ξ1 = 1 + z.
We require |1 + z |≤ 1, thus RABS,FE = B(−1,0)(1).
Note: this means that we must have <λ < 0 and −2 ≤ hλ ≤ 0.

Example 5.5 (BE; ρ(ξ) = ξ − 1, σ(ξ) = ξ)

For BE πBE(z; ξ) = (1− z)ξ − 1, with root ξ1 = 1
1−z .

To get | 1
1−z |≤ 1 we must have |1− z |≥ 1. RABS,BE is the exterior of B(1,0)(1),

or the interior of C \B(1,0)(1) in C.
Note: this means that BE is absolutely stable for any h when λ ≤ 0. Also, if
λ > 0, the method is not absolutely stable as h→ 0. 45 / 80
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Plotting stability regions; single-step methods

1 Write the scheme in the form Un+1 = R(z)Un.
R(z) is called the growth factor or stability function

2 The boundary of RABS is the set of z: |R(z) |= 1.

3 Plot the contour of |R(z) | in MATLAB

%% Set-up grid for contour plotting in R^2=C

[xx,yy]=meshgrid(linspace(-2,2),linspace(-2,2));

%% Find the formula for the growth factor R(z)

%% Example: FE U^{n+1}=U^n+zU^n; R(z)=1+z

>> growth = @(z)((1+z));

>> contourf(xx,yy,abs(growth(xx+1i*yy)),[1,1]);axis([ -2 2 -2 2]);grid on
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Finding the region z ∈ RABS for LMM

Algorithm

1 Identify the polynomials ρ(ξ), σ(ξ), π(z; ξ) for the scheme.

2 Solve for ξ the equation π(z; ξ) = 0.

3 The roots ξ(z) depend on z.

4 For single roots, solve the inequality |ξ(z) |≤ 1: identify z for
which this holds.

5 For repeated roots, make sure they satisfy |ξ(z) |< 1.

Mark on C “all” z in RABS .
In practice, you want to plot the boundary of RABS . In MATLAB,
this can be done in two ways described below.

Remark 11

It is “safest” for z = λh to be in the interior of RABS .
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Plotting (boundary of) stability regions, LMM

1 Identify the polynomials ρ(ξ), σ(ξ), π(z; ξ) for the scheme

2 The boundary of RABS is the set of roots ξ of π(z; ξ) for which
|ξ |= 1. The points ξ = eiθ lie on unit circle.

3 Solve for z the equation π(z; eiθ) = 0.

4 Plot the curve of z (the boundary of RABS) in MATLAB
%% Set-up points on unit circle.

>> theta = linspace(0,2*pi); xi = exp(1i*theta);

%% (Learn how to plot in C two ways)

>> plot(xi); pause; plot(real(xi),imag(xi))

%% solve for z for which roots of pi(z;xi)=0 are on the unit circle

%% Example: FE rho(xi)=xi-1, sigma(xi)= 1, pi(z;xi)=xi-1-z=0.

%% Solve pi(z,xi)=0 for z in terms of xi. Obtain z=xi-1

>> mybd = @(xi)(xi-1); z = mybd(xi);

>> plot(z,’k’);fill(real(z),imag(z),’blue’);axis([ -3 3 -3 3]);grid on

%% add another contour to indicate properly the interior of R^{ABS}

>> z2=mybd(2*xi); hold on; plot(z2,’r’);

The algorithm fills the inside of the contour, not necessarily the interior of

RABS . z2 helps.
Practice with BE, Trapezoidal method, AB-*, AM-*
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Order stars, single step scheme for u′ = λu,

Here we consider again a single step scheme Un+1 = R(z)Un.
The stability factor R(z) provides an approximation to ez.

Plotting contours of R(z)e−z (order stars) gives an idea how well R(z) ≈ ez. We
have R(z)e−z = 1 + r(z), where r(z) measures the discrepancy. One can show
that for a method of order p, r(z) ≈ O(zp+1).
Plotting the contour 1 of e−zR(z) we expect to see it produce p+ 1 wedges
“inside” and p+ 1 wedges “outside”. (This is the behavior of the function
1 + Czp+1 near the origin; its contours are made of 2(p+ 1) wedges.)
The plot is known as “order-star” since it allows to identify the order of the
method by counting the wedges.

%% Recall plotting in R^2=C

[xx,yy]=meshgrid(linspace(-2,2),linspace(-2,2)); z=xx+1i*yy;

%% Use the growth factor R(z)=1+z+z^2/2 (order p=2 of accuracy)

>> growth = @(z)((1+z+z.^2/2));

>> contourf(xx,yy,abs(growth(z).*exp(-z)),[1,1]);axis([ -2 2 -2 2]);grid on

%% Compare to the polynomial 1+Cz^{p+1}, C=-4 is rather arbitrary

>> contourf(xx,yy,abs(1-4*z.^3),[1,1]);axis([ -2 2 -2 2]);grid on

%% You should have seen three wedges in both plots!
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How to choose a method, and how to choose h

1 Plotting absolute stability regions is an interesting activity, but
it may be hard from the plot alone to check (for a given λ), if
z = λh ∈ RABS .

2 We do not have a “choice” of λ, since it comes from the problem
we are solving. But we can (i) choose a method which can be
absolutely stable for this λ, and (ii) select an appropriate h so
that z = hλ ∈ RABS for this method.

3 For nonlinear problems, we select the method as in (2) based on
the sign of fu and the magnitude of fu which plays the same role
as λ. (think of linearizing f(t, u) ≈ f(t, u∗) + fu(t, u∗)(u− u∗),
where u∗ is some conveniently chosen point, typically, an
equilibrium).

4 For linear systems u′ = A(t)u+B(t), we have to consider all the
eigenvalues of A(t) in place of λ.

5 For nonlinear systems, we combine (3) and (4).

Sometimes |λ | is called the time-scale. If |λ | is large, system has fast transients.

If |λ | is small, evolution is slow. A system can have multiple time scales.
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Examples: linear and linearized problems
Recall slide 6: |u(t) | increases at worst exponentially with O(eLf t)).
To get more information for a nonlinear f , we try to linearize about
an equilibrium u∗(t) where f(t, u∗) = 0; we use λ = fu(t, u∗).
Sometimes, however, this does not work.

Example 6.1 (Linear scalar pbm)

u′ = −30u; As t→∞ |u(t) |→ 0; asymptotically stable; fast decay
u′ = −0.01u; Asymptotically stable; slow decay
u′ = −tu, t > 0; Here λ < 0. Stable; decay slow near 0, decay accelerates as t ↑.
u′ = 3u; clearly |u(t) | increases exponentially, λ = 3.

Example 6.2 (Nonlinear scalar f ; linearization useful or not)

u′ = −3u2, u(0) > 0; u∗ = 0; Here λ = −6u∗ = 0. For any u(0) > 0,
λ = −6u(0) < 0; with f(u) ≤ 0; pbm is stable. However, with u(0) < 0 pbm is
unstable with blow-up.
u′ = u(1− u); Two equilibria u∗1,2 = 0, 1; λ1,2 = 1− 2u∗. Stable with λ2 < 0 but
unstable with λ1 = 1 > 0.
u′ = −eu, u(0) > 0; No equilibria. Linearization about any point gives λ < 0;
solution decreases but |u(t) | grows logarithmically.
u′ = 1

1+u2 ; No equilibria. Increasing solution even though linearization predicts

λ < 0 and |λ |≤ 1 (Linearization underpredicts growth).
u′ = e−u, u(0) > 0; No equilibria. Logarithmic growth of |u(t) | even though λ < 0.
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Systems u′ = f(t, u), f(t, u) ∈ Rd

In this class we assume the matrix Df ∈ Rd×d system is
always diagonalizable, i.e., that there is a basis for Rd made
of the eigenvectors of Df .

Solving a linear constant coefficient system of ODEs u′ = Au
[RJL, Sec.7.4.2]

diagonalize A = RΛR−1;

v = R−1u is the new coordinate system;

solve the diagonal system v′ = Λv; (find the general solution)

go back to u = Rv;

apply the I.C. to u(t).

Solving variable coefficient systems when A = A(t) or a
nonlinear system “by hand” is usually not possible. For
numerical schemes it is important to identify how the
eigenvalues λj calculated near equilibria depend on u.
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Examples of systems

Example 6.3 (Diagonal system u′ = Au)

Let A =

[
1 0
0 −10

]
. We have Λ = A; λ1 = 1;λ2 = −10; eigenvectors are the

columns of R = I. Compute uj(t) = vj(t) = Cje
λjt. Apply I.C. directly.

Example 6.4 (Non-diagonal system u′ = Au)

Let A =

[
2 1
1 2

]
. The eigenvalues are λ1 = 1;λ2 = 3, and the eigenvectors are

r1 = [1,−1]T , and r2 = [1, 1]T . (Normalize them to get an easy R). Compute
vj(t) = Cje

λjt; calculate u(t) = Rv(t). Apply I.C.

Example 6.5 (Linearized pendulum system u′ = Au)

Let A =

[
0 1
−1 0

]
. The eigenvalues are λ1,2 = ±i, and the eigenvectors are

r1 = [1, i]T , and r2 = [1,−i]T . (Normalize them to get an easy R). Compute
vj(t) = Cje

λjt; calculate u(t) = Rv(t). Apply I.C. Verify the solution is the same
as by solving x′′ + x = 0.
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Examples of nonlinear systems

Example 6.6 (Particle and its velocity in a double-well potential field)

Consider x′ = y; y′ = x− x3. Compute the eigenvalues of the Jacobian at the
equilibria (0, 0) and (±1, 0) to find that the eigenvalues have different signs. As for
behavior, the system is conservative, and E(x, y) = 1

2
y2 − 1

2
x2 + 1

4
x4 = const.

Example 6.7 (Rabbits x(t) vs sheep y(t): Lotka-Volterra competition)

We study x′ = x(3− x− 2y); y′ = y(2− x− y). There are multiple equilibria, and
many eigenvalues to consider.

Example 6.8 (van der Pol system)

We consider µ > 0 and x′′ + µ(x2 − 1)x′ + x rewritten as a system. Here the
system can be seen as a modification of the pendulum problem with a damping
term µ(x2 − 1)x′.

What numerical method would you choose for these problems? What h?

54 / 80



Lectures 1-3 Interlude 4-6 7-10 11-13 14-15 16-18 19-end

Stiff problems; stiff systems
We call a problem “stiff” if |λ | is large. A system is also called “stiff”
if the eigenvalues differ much in magnitude.
A problem (scalar or a system) is stiff if there are large differences between the

. . . .time. . . . . .scales in the problem.

Example 6.9 (Scalar)

Consider u′ = λ(u− p(t)) + q(t) where p(·), q(·) are bounded functions, and when
λ < 0 with very large |λ |. This ODE is called “kinetic” (or a relaxation ODE)
when q = 0, and has solutions that tend to the “equilibrium” p(t) very quickly, in
T ≈ O( 1

λ
).

For example, choose q(t) = 0, p(t) = 5t
1+t

.

See also [RJL,Ex.8.1] with p(t) = cos(t), q(t) = sin(t).
Since λ < 0 and |λ | is large, we want to find a method for which RABS contains
much of the left complex plane so that h is not too restricted. For example, for
BE, no restriction on h is needed.

Example 6.10 (System u′ = Au)

Let A =

[
1 0
0 −1000

]
. The system ... is stiff. The eigenvalues are 1,−1000.

When using FE, we would want to use h < 2
1000

due to stiff decay of the second
component, while the first component is expected to mildly grow.

Play with these examples: plot their numerical solutions.
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Choosing a method for dissipative problems.
A-stability and L-stability

Definition 6.11 (A-stability)

... holds if RABS contains all of left plane.

Remark 12

We have seen that RABS,BE is large, and contains all of left plane,
i.e., the error in BE is easily controlled for any h when <λ < 0. BE is
A-stable. Trapezoidal method shares this property.

Recall the single step stability (growth) factor R(z).

Definition 6.12 (L-stability)

... holds if limz→∞ |R(z) |= 0.

Example 6.13

Consider BDF methods such as Ex. 3.10, 4.5; they are L-stable.
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Continued examples
Example 6.14 (Chemical reactions; see [RJL, Sec. 7.4.1] for intro)

The system below is known as the Robertson system

y′1 = −αy1 + βy2y3; y′2 = αy1 − βy2y3 − γy2
2 ; y′3 = γy2

2 .

Values α = 0.04, β = 104, γ = 3 · 107 correspond to slow, fast, and very fast
reactions, and show this is a very stiff system. Start with y(0) = [1, 0, 0]T .

Example 6.15 ((Modified) Kepler problem, Hamiltonian system)

Consider Hamiltonian (total energy functional) H(q, p) = 1
2

(p2
1 + p2

2)− 1
r
− 0.01

r3
,

with r =
√
q2
1 + q2

2 , and q′ = Hp, p′ = −Hq . Here p, q denote velocity and position

components, respectively. One can show H|t=T = H|t=0 for any T .
Numerical solution is very noisy, even with higher order or A-stable methods.

Example 6.16 (Lambert example)

u(t) = e0.1t sin(8t) + e−50t, v(t) = e0.1t cos(8t) + e−50t,

w(t) = e0.1t(cos(8t) + sin(8t)) + e−50t.

with a matrix with eigenvalues 0.1± 8i, and −50. Starting at T0 = π/8,
interesting dynamics unfolds. An A-stable numerical method (BE or Trapz) may
damp the oscillations too much, if h is too large.
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Examples from spatially discretized PDEs.
Damping frequently desirable; but not always.

Example 6.17 (Diffusion system u′ = Au, with Dirichlet b.c.)

Let A = −
[

2 −1
−1 2

]
with moderate eigenvalues −1,−3. System is not stiff,

but can be generalized to A ∈ Rd×d (sparse, with 2 on the diagonal, and −1 in
sub- and super-diagonals). This corresponds to the spatially discretized diffusion
equation, with ratio of the eigenvalues increasing as O(d2).
L-stable schemes are desirable. (BE is a good choice).

Example 6.18 (“Advection” system u′ = Au, with periodic b.c.)

Let A = −

 1 0 −1
−1 1 0

0 −1 1

. Matrix A is singular, and the two complex

eigenvalues have <λ < 0. If you generalize to d× d, one always has λ1 = 0; most
of the other d-1 eigenvalues have nontrivial = part.
L-stable schemes are not necessarily desirable because they will damp the
oscillatory behavior of the solutions to the problem. (FE is preferable over BE.)
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How to find the “right” method & time step h
For a given problem u′ = f(t, u) we know ||f ||∞, and Lf , and the
“sign” of (the eigenvalues of) λ. For scalar problems the sign of f
matters; for systems, it does not.

Choose a method:

zero-stable, consistent, with a reasonably large region RABS for typical λ.

Choose time step h:

1 h small enough for stability so that z ∈ RABS

2 h small enough for accuracy (the truncation error → global error)

Control the truncation error to some tolerance

use a-posteriori error control, since a-priori may be too pessimistic

3 h large enough to have an efficient scheme:

Very small h requires many time steps

it takes too long to solve a problem

for complicated f , additional round-off error may accumulate

Revisit Examples 6.1-6.18. Choose a method and h.
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A-posteriori error and time step control

We can try to estimate (without knowing the true solution u(t)

the local (one-step) truncation error (τ=LTE) in each step,

with embedded RK, and/or predictor-corrector pairs

the global error (accumulated LTE)

with Richardson extrapolation

The local estimate for τ helps to control the time step h by
requiring, e.g., τ ≤ tol.
If τ is too large, we cut h.
If τ is very small, we can increase h.
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Local error estimates

Remark 13 (Estimate τ with RK embedded (Fehlberg)
methods)

Calculate Ûn+1 using r stages and Un+1 using r + 1 stages,
evaluating f at essentially the same stages Yj for both methods. Use

the higher order Un+1 to estimate τ in Ûn+1.

Example 7.1 (Heun method (17) works as embedded method)

Calculate Ûn+1 − Un+1 = . . . ≈ Un + h2

2
f(Un)f ′(Un) ≈ hτn; τn is LTE for FE.

The famous Dormand-Price r = 4, 4/5th order pair is implemented in ode45.

Remark 14 (Estimate τ with predictor-corrector pairs)

Calculate Ûn+1 in a predictor step, and Un+1 in a corrector step.
Estimate the error in predictor step from Un+1, Ûn+1.

Example 7.2 (Heun method (17) works as predictor-corrector)

Calculation of Ûn+1 is a predictor step. The corrector step (higher order implicit
method, trapezoidal), replaces the “implicit” computation by the predicted value.
This is also the pair of AB-1 with AM-1; other Adams methods work similarly
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Code for local error estimate for Ex. 7.1

...

fprintf(’DEMONSTRATING estimates of LTE\n’);

prevsol = y0;

for n=1:5

du = f (h*n, prevsol);

nsolhat = prevsol + h * du;

FEsol = nsolhat;

%% calculate Heun estimate

du2 = f(h*(n+1),nsolhat);

HEUNsol = prevsol + h/2*(du+du2);

%% LTE estimate, plus errors

fprintf(’Step %d time =%g h*LTE(true)=%g h*LTE estimate=%g\n’,...

n,h*n,d2exact(h*(n-1))*h^2/2,HEUNsol-FEsol);

%% save FE solution

prevsol = FEsol;

end

User must code the functions f(t, u) in function f(t,u), and u′′(t) in d2exact.

62 / 80



Lectures 1-3 Interlude 4-6 7-10 11-13 14-15 16-18 19-end

Global error estimates, by Richardson
extrapolation; recall slide 25

Let I be the true quantity, and Ih its approximation dependent on
step h. For example, I = u(T ), and Ih = UN when T = Nh.
Consider a first order method, with I − Ih ≈ Ch+O(h2).
For this case, 2Ih − I2h = I +O(h2), so 2Ih − I2h provides a second
order approximation to I.

An estimate for the error I − Ih ≈ Ih − I2h +O(h2) is available.

Example 7.3 (Global error estimate for FE with time step doubling)

Choose h so that T/2h = J is an integer.
Consider time steps 0 = t0, t1, . . . tN = T with tn = nh.
Define also the double-time grid 0 = t̄0, t̄1, . . . t̄J = T , with t̄j = j2h.
Note T = J2h = Nh, N = 2J , and each t2j = t̄j ; we expect U2j ≈ Ūj .
Numbering may be different in your code
Find Un, n = 1, . . . N , on the single-time grid, with FE.
Find Ūj , j = 1, . . . J , on the double-time grid, with FE.

Compare the true error u(T )− UN to its Richardson’s estimate UN − ŪJ .

You can repeat at every time step n = 2j: compare u(t̄j)− U2j to U2j − Ūj .
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Code for global error estimate for Ex. 7.3

This code assumes that you have coded a function euler explicit; in addition,
you need f, and exact.

%%%%%%% demonstrate estimates of global error

...

%% the numerical solution is in y1 and y2 (double step)

[t1,y1] = euler_explicit (y0,0,1,h);

[t2,y2] = euler_explicit (y0,0,1,2*h);

te = linspace(0,t1(end),size(t1,2)*10);ue = exact(te);

%% plot

plot(te,ue(1,:),’k’,t1,y1(:,1),’r*-’,t2,y2(:,1),’bo-’);

legend(’exact’,’step h’,’step 2h’);

%% show error and its estimate

for n=1:length(t2)

fprintf(’ex_error=%g err_estimate (Richardson)=%g \n’, ...

exact(t2(n))-y1(2*n-1), y1(2*n-1) - y2(n) );

end
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Recap: FD for IVPs
Review concepts

Analyze the problem itself u′ = f(t, u)
(*) What is the behavior of solutions? What are the
characteristic λ’s for your problem?

(**) What method would you choose based on (*)? (single step,
single-step multi-stage, multi-step, . . . )

Is the method zero-stable?
How much do you care about preserving qualitative
character?
How much do you care about the accuracy?
How expensive is the method ?

(***) What h would you choose for the method (**) ?

Stability ? (stay in Rabs if possible)
Accuracy ? (run the code with some simple methods for
your problem to get a sense of LTE and global error)
How many time steps/stages do you need with this h? How
many evaluations of f ?

Do you need to revisit (**) ?
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BVP: boundary value problems
So far we have studied first order IVP u′ = f(t, u), u(0) = u0.
A second order IVP

u′′ = f(t, u, u′), u(0) = u0, u
′(0) = u1, (26)

can be converted to (and analyzed as) an equivalent first order system
of ODEs

u′ = v, v′ = f(t, u, v); u(0) = u1, v(0) = u1.

An important BVP class of second order ODEs requires
boundary rather than initial conditions.

u′′ = f(t, u, u′), u(0) = u0, u(1) = u1. (27)

The theory of well-posedness for BVPs is much more complicated
(and more limited) than that for IVPs. We will only study some
selected (classes of) problems.
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Boundary conditions
Conditions in linear two-point constant coefficient BVP

u′′ +mu′ + nu = f(t), t ∈ [a, b];u(a) = ua, u(b) = ub (28)

Condition u(a) = ua is known as Dirichlet condition, u′(a) = ub is known as

Neumann condition, u′(a) + Cu(a) = uc is known as the Robin condition. One

can also impose periodic conditions, e.g., u(a) = u(b), u′(a) = u′(b). If the data

equals 0, we call the BC homogeneous.

Example 8.1 (Existence and uniqueness of solutions depending on BC)

Consider t ∈ [0, 1]. Find the general solution and determine if the solution exists
and if it is unique.
u′′ = 0, u(0) = 0, u(1) = 0
u′′ = 1, u(0) = 0, u(1) = 0
u′′ = 1, u′(0) = 0, u′(1) = 0
u′′ = 1, u(0) = 0, u′(1) = 0
u′′ = 1, u′(0) + u(0) = 0, u′(1) = 0
u′′ = 1, u(0) = u(1), u′(0) = u′(1)
u′′ = u, u(0) = 0, u(1) = 0
u′′ = u, u(0) = 0, u′(1) = 0
u′′ = −u, u(0) = 0, u(1) = 0
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Examples of two-point BVP

Example 8.2 (Pendulum: when initial and final position are known)

Recall the pendulum problem θ′′ + θ = 0 which we set up as IVP when the initial
position θ(0) and initial velocity θ′(0) are known.
The problem is a BVP if, e.g., initial and final positions are known θ(0) = θ0, and
θ(T ) = θ1. Instead, one could know θ′(0) and θ(T ).

Example 8.3 (Equilibrium problem in elastic rod attached to walls:
(generalizes a spring-mass system) attached to walls)

Here u denotes longitudinal displacement in an elastic rod from its equilibrium due
to external force f (gravity), balanced by internal elasticity forces according to
Hooke’s law y = ce, e = k du

dx
, and by Newton’s f + d

dx
y = 0. Thus − d

dx
(k du
dx

) = f .
BC reflect (i) no displacement at the ends of the rod u(0) = 0, u(L) = 0, or (ii)
right end unattached u′(L) = 0.

Example 8.4 (Stationary heat conduction)

Here u denotes temperature in a rod. Heat flux q = −k du
dx

is proportional to the

gradient of temperature, and energy conservation requires dq
dx

= f , with external
heat sources given by f .
BC mean: (i) fixed temperature at two ends u(0) = u0, u(L) = uL. (ii) If rod is
insulated on left end, we have ku′(0) = 0. (iii) If flux on right end is proportional
to the difference with ambient temperature u∗, we have ku′(L) + a(u(L)−u∗) = 0.
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Numerical solution of two-point BVP (28)

1 Define a grid on [a, b]. Easiest is uniform grid a = t0, t1, . . . tM = b. Here

h = b−a
M

, and tj = a+ jh.

2 Discretize. (Replace u′′(t) by D2
hu(t) =

u(t+h)−2u(t)+u(t−h)

h2
, and other

derivatives by difference quotients.)

3 Write the discrete equation to be satisfied by Uj−1, Uj , Uj+1 at every
interior node tj

4 Apply BC to U0 and UM

5 Collect all unknowns in U = [U0, U1, . . . UM−1, UM ]T , and right-hand side
in F = [f0, f1, f2, . . . fM−1, fM ]T . The entries f0, fM will be given from
boundary conditions.

6 Identify the coefficients in steps 2,3 as components of a matrix A

7 Solve the linear system AU = F

Remark 15 (MATLAB numbering)

The nodes and unknowns above are numbered from 0, 1, . . .M . MATLAB does not
allow indexing from 0, so the unknowns in your code will likely be numbered
U1, . . . UM+1. The principles remain the same.
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Example: −u′′ = f on [a, b]
with Dirichlet BC u(a) = ua, u(b) = ub

Example 8.5 (Derive and solve the discrete system of equations)

Decide on M and h, h = b−a
M

.
Equation for internal nodes and boundary conditions

Interior nodes : 1
h2 (2Uj − Uj−1 − Uj+1) = f(tj), ∀j = 1, . . .M − 1 (29a)

Boundary nodes : U0 = ua, UM = ub. (29b)

Set-up system of equations AU = F with

A =
1

h2


1 0 . . . 0
−1 2 −1 . . .
. . .
. . . −1 2 −1
. . . 1

 , F =


ua
f(t1)
. . .

f(tM−1)
ub

 . (29c)

Solve linear system AU = F . In MATLAB, write U=A\F

Note the first and last rows in (29c) correspond to BC, and could be trivially
eliminated. The numbering above is not MATLAB-like.
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Code for BVP from slide 70

Numbering, again (recall Remark 15

When coding, the interior nodes will be numbered 2, . . .M , and boundary nodes
will be numbered 1 (left boundary) and M + 1 (right boundary). In particular,
when we apply the BC, we write U(1) = ua;U(M + 1) = ub, for the first and last
entries of U . .

dx = (b-a)/(M); x = (a:dx:b)’; %% use uniform grid, x is numbered from 1...M+1

%% set up the matrix and the right hand side vector

f = rhsfun(x);

A = sparse(M+1,M+1);

for j=2:M

%% set up j’th internal row of the matrix

A(j,j) = 2; A(j,j-1) = -1; A(j,j+1) = -1;

end

A = A / (dx*dx);

%% apply the Dirichlet b.c. to the matrix and right hand side

A (1,1) = 1; f (1) = ua;

A (M+1,M+1) = 1; f (M+1) = ub;

%% solve the linear system;

U = A \ f;

This code can be vectorized for faster performance
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Solution to BVP from slide 70

Start assuming an exact solution u(t) = sin(πt).
Calculate (manufacture) f(t) = π2 sin(πt).
Implement the code and plot ...

h E(h,∞) E(h, 2)
0.1 0.008265 0.058
0.05 0.00205871 0.0015
0.01 0.0000822508 0.0000582

Test convergence in L∞ and L2 to see that E(h, ∗) = O(h2) for each
norm; see table.
(See below for a precise definition of norms, and convergence analysis).
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Alternative to solving a system:
shooting method

Notes from Prof. Faridani TBA.
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Analysis of convergence of FD for BVP
Define now the interior part Ah ∈ R(M−1)×(M−1) of the matrix A from (29c).

Remark 16 (Error analysis)

Writing the error equation we find AhE = τ where τ is the vector of
truncation errors τj (truncation errors on the boundary are 0).
Proving convergence

||E ||∗ → 0, as h→ 0 (30)

requires proving consistency and stability.

Here ∗ stands for the functional space in which we want to measure the error.

Consistency: with D2
h, the truncation error τj ≈ O(h2) if u ∈ C4

Stability: to keep ||E ||∗ = O(h2), we require ||A−1h ||∗ ≤ C.

Choosing norm

We generally like to use ∗ to be L∞ space, but it is easier to get the
bound ||A−1h ||L2 .
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Vector, matrix, function & grid function norms.
Remark 17 (Vector norms in lp spaces)

Rd 3 x, ||x ||p :=
(∑

j |xj |p
) 1

p
, 1 ≤ p <∞. ||x ||∞ = maxj |xj | . (31)

Remark 18 (Norms for functions and grid functions)

For functions f : [a, b]→ R we extend the lp vector norms to the norms in
Lebesgue spaces Lp of functions for which the integral below is well defined and
finite

||f ||p =

(∫ b

a
|f(x) |p dx

) 1
p

; 1 ≤ p <∞. ||f ||∞ = esssupx∈[a,b] |f(x) | . (32)

For grid functions (sampled on a grid) with f(xj), j = 1, . . .M , and 1 ≤ p <∞,
we approximate these integrals with Riemann sums

||f ||p =

∑
j

h |f(xj)) |p
 1

p

= h
1
p || [f(x1), . . . f(xj) . . . f(xM )]T ||p (33)

We will not distinguish between the symbols || · ||p as they apply to vectors in Rd,
functions on R, or grid functions. The meaning of a symbol should be clear from
its context.
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Matrix norms; stability in the 2-norm

Remark 19 (Some matrix norms)

Rd×d 3 A, ||A ||1 = “max abs col sum′′ = maxj
∑
i |aij | (34)

Rd×d 3 A, ||A ||∞ = “max abs row sum′′ = maxi
∑
j |aij | (35)

The norm ||A ||2 =
√
ρ(ATA), where the spectral radius ρ(B) is the

largest to magnitude eigenvalue of matrix B.
For a symmetric real matrix ||A ||2 = ρ(A).

Example 8.6

Consider A =

[
1 0
0 −10

]
. We have ||A ||1 =||A ||∞ =||A ||2 = 10.

Consider A =

[
1 −1
−1 2

]
. We have ||A ||1 =||A ||∞ = 3;

||A ||2 = 3+
√

5
2
≈ 2.62 = ρ(A).

Let A =

[
1 −1

2

]
. We have ||A ||1 = 3, ||A ||∞ = 2, ||A ||2 =

√
3 +
√

5 ≈ 2.28,

while ρ(A) = 2.
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Stability in the 2-norm

Information from the analysis of BVP

One can show that the eigenfunctions of the differential operator

− d2

dx2 with Dirichlet BC, on [0, 1], are uj(x) = sin(πjx), with the
corresponding eigenvalues Λj = (jπ)2.

Convince yourself that this is true, and check −u′′j = Λjuj .

Example 8.7 (Continue Ex. 8.5; A = AT ; estimate eigenvalues of A−1)

In the discrete setting, an approximation to − d2

dx2
(with Dirichlet BC) is the

interior part Ah ∈ R(M−1)×(M−1) of the matrix A from (29c).
One can show that the eigenvectors U1, U2, ... . . . UM−1 of Ah in (29c) have entries
(Uj)k = sin(πjxk). Plugging in AhUj = λjUj we get λj = 2

h2 (1− cos( jπh)) ≈ Λj .
Now we want to find λj closest to 0 (which is for j = 1), because this would give

the largest to magnitude λ−1
j , i.e., ρ(A−1

h ) =||A−1
h ||2 (since Ah is symmetric).

A bit of (pre-)calculus shows 1− cos(πh) = 2 sin2(πh
2

) = O(h2) for small h. Thus

||A−1
h ||2 = ρ(A−1

h ) ≤ C, (36)

with a constant C independent of h, and we have stability in L2.
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Stability in the ∞-norm
Further information from analysis of BVP . . .

One can show that the solution u(t) to the BVP is given as

u(t) =

∫ 1

0

G(t, s)f(s)ds,

where G(t, s) is the . . . . . . . .Green’s . . . . . . . . .function for the problem. This function is
piecewise linear in s, with a jump of derivative equal 1 at s = t.
We have G(x, y) = (1− y)x, for x ∈ [0, y], and y(1− x) for x ∈ [y, 1].

Example 8.8 (Continue Ex. 8.5, get an estimate of ||A−1
h ||∞)

One can write the numerical solution

Uj = h
∑
i

f(xi)G(xi, xj) (37)

In other words, the matrix (hG(xi, xj))ij = A−1
h .

To calculate ||A−1
h ||∞, we need to estimate the (abs) row sum of A−1

h , or estimate

it from above by the integral
∫ 1
0 G(t, s)ds, ∀t.

These can be shown to be bounded by a constant independent of h.
Thus we have stability in L∞. 78 / 80
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Wrap-up BVPs

What we have covered

Basic methods

shooting: exploits IVP methods, and iteration
direct BVP solvers: use BC, solve linear system

Error analysis for direct BVP solver: LTE analysis &
stability (bounds for ||A−1 ||∗)
Error ||E ||∗ = O(hp), same as of LTE

What we have not covered (deferred to 4/553)

BC other than Dirichlet

higher order methods

non-uniform grids

How to extend to −∇ · (K∇u) = f

How to treat IBVP for ut − uxx = f
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The End
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