MTH 452-552 Assignment 7.
FirstName LastName
Prof. M. Peszynska
Due: 03/02/2018
Consider a simple ODE which is easy to solve

$$
\begin{equation*}
u^{\prime}=-10 u, u(0)=1 ; \quad t \in[T 0, T], \tag{1}
\end{equation*}
$$

and a kinetic ODE, with application to adsorption phenomena

$$
\begin{equation*}
u^{\prime}=-10(u-p(t)), u(0)=1 ; \quad t \in[T 0, T], \quad p(t)=\frac{t}{1+2 t} \tag{2}
\end{equation*}
$$

When choosing time steps for accuracy reasons, it is OK to consider "nice" $h: T / h \in \mathbb{N}$.
Problem 0, warm-up (do not turn in). Plot the solution to (1). Use ode45 to study the solution to (2) or (1). For example, see
$\mathrm{f}=@(\mathrm{t}, \mathrm{u})(-10 * u)$; [te, ue]=ode45 (f,linspace (T0, T, 1000) , y0) ;
plot(te, ue,'r*', te, $\exp (-10 * t e), ' k-')$;
Problem 1, theoretical. Confirm whether the Improved Euler method can be used along with FE in the embedded RK framework for truncation error estimates.

Problem 2, computational. [552 do (a-d), 452 do three of (a-d).] Code templates are available in class notes.
(a) Implement the pair of $\mathrm{FE}+$ Heun methods for (1) to predict the truncation error aposteriori in the first two steps of FE on $t \in[0,1]$. (Compare with the true value $\left.h u^{\prime \prime}(t) / 2\right)$. By trial and error find the time step h for which the LTE ≤ 0.1. Compare with the stability restriction.
What about when $t \in[1,2]$? (modify the initial condition to $u(1)=e^{-10}$).
(b) Implement the Richardson strategy of time step doubling to estimate a-posteriori the global error for (1) at $T=1(T 0=0)$; compare with the true error. Test with $h=0.05$ and smaller.
(c) Repeat (a) for (2). Hint: the exact solution of the problem may not be easy to compute. You can use the ode45 solution calculated on a very fine grid as a proxy. For example,
[te, ue] =ode45 (f,linspace (T0, T, 10000) , y0) ;
exact = @(t) (interp1 (te, ue,t));
(d) Repeat (b) for (2).

Extra project 7: (a) Implement full variable/adaptive time stepping strategy for (2) similar to Pbm 2 a . Test on scalar examples from class notes. (In each time step predict LTE and decrease or increase time step. Make sure not to violate stability restrictions).
(b) Define a global error estimation strategy for the trapezoidal method similar to Pbm 2 b . Test it on (2).

