
Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

MTH 453-553 Spring 2018
Class notes

Malgorzata Peszyńska

Department of Mathematics, Oregon State University

Spring 2018

1 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Introduction and Overview

These notes are intended tosupplement rather than replace any
textbook material or material covered in lectures.
Examples will be worked out in class.
I will use material from several references

[RJL]. R.J. LeVeque, Finite Difference Methods for ODEs and
PDEs, SIAM 2007

[IK] Isaacson, Keller, Analysis of Numerical Methods

[QV] Quarteroni, Valli, Numerical Approximation of Partial
Differential Equations, Springer, Second Ed., 1997

The purpose ... (by Richard Hamming)

”The purpose of computing is insight, not numbers”

”The purpose of analysis is to solve problems, not create pretty
theorems”

2 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

PDE types
Consider u = u(t, x, y, . . .), or u : Ω ∈ Rn → R which solves

F (u, ut, ux, uy, . . . , utx, uty, utt, uxx, uyy, uxy, . . .) = 0 (1)

1 The PDE (1) must be supplemented with appropriate boundary
and/or initial conditions on ∂Ω. We will consider BVP, IVP, and
IBVP.

2 Does the solution to (1) (with the additional conditions) exist?
Is it unique? How does it depend on its data? Is the problem
well-posed?

3 What is the qualitative nature of solutions and their regularity?

4 In principle, higher order PDEs can be converted to systems of
lower order, but this does not help much in analysis/solving
except in special circumstances.

5 Numerical methods have to honor the behavior.
Suggested review/reading: Guenter/Lee text; other MTH 621-* or MTH 4/582.

3 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Examples of PDEs of canonical types and not
Recognize . . .

Order, linear/nonlinear, what conditions (BVP, IVP, IBVP) needed.
Application/name ?

ut + aux = 0; ut + uux = 0; ut + (
u2

2
)x = 0; ut + (ux)2 = 0 (2)

−uxx − uyy = 0; −∆u = f ; (3)

ut − uxx = 0; ut −∇ · (k(x, y)∇u(x, u)) = f ; (4)

ut −∇ · (k(u)∇u) = 0; (5)

ut + aux − kuxx = f(u), ut +∇ · g(u)−∇ · (k(x, y, u)∇u) = f(u) (6)

utt − uxx = 0; utt + ut = ∆u (7)

−µ∆u = −∇p, ∇ · u = 0, or ut − u · ∇u− µ∆u = −∇p, ∇ · u = 0 (8)

NOT (just) PDEs:

ut +

∫ t

0
e−(t−s)ut(s)ds− uxx = 0 (9)

ut +

∫
Ω
k(x)u(x)dx− uxx = 0 (10)

4 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

What we have covered in other classes

MTH 452/552, Basic methods for BVP and IVP

BVP solvers for −u′′ = f :

Approximate as −(D2
hU)j = fj ; apply BC, solve linear

system
Error analysis for BVP solvers:
Consistency & Stability ≡ Convergence
LTE of O(hp) & Bounds for ||A−1 ||∗ ≡ ||Eh ||† = O(hp).
Norm choice † depends on ∗ and p

IVP solvers for u′ = f(t, u) : single-step and LMM methods

What we have not covered

Non-Dirichlet BC; higher order methods, non-uniform grids

How to extend to BVP in Ω ⊂ Rd, d > 1; −∇ · (K∇u) = f

How to treat IBVP, e.g., for ut − uxx = f

How to solve large sparse linear systems (see MTH 451-551) 5 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Outline of class

Two-point BVP, general BC, variable coefficients
Recall 4/552 material; expand the theory, implementation, and applications

Laplace equation −∆u = 0 and more generally −∇ · (K∇u) = f

Heat (diffusion) equation ut −∆u = f

Wave equation utt −∆u = 0

Advection/transport equation ut + aux = 0

Other: in particular, ADR ut + aux − duxx = f(u).

Methods, math/ implementation/ applications content

We will focus on FD (finite differences). However, other methods such
as FE (finite elements), and spectral methods will be mentioned.
Code templates will be provided.
We will study, as always, consistency, stability, convergence.

Interplay of discretization in t and x will be important.

6 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Recall the two-point BVP (MTH 452/552)
Conditions in linear two-point constant coefficient BVP

u′′ +mu′ + nu = f(x), x ∈ [a, b];u(a) = ua, u(b) = ub (11)

Condition u(a) = ua is known as Dirichlet condition, u′(a) = ub is known as

Neumann condition, u′(a) + Cu(a) = uc is known as the Robin condition. One

can also impose periodic conditions, e.g., u(a) = u(b), u′(a) = u′(b). If the data

equals 0, we call the BC homogeneous.

Example 2.1 (Existence and uniqueness of solutions depending on BC)

Consider x ∈ [0, 1]. Find the general solution and determine if the solution exists
and if it is unique.
u′′ = 0, u(0) = 0, u(1) = 0
u′′ = 1, u(0) = 0, u(1) = 0
u′′ = 1, u′(0) = 0, u′(1) = 0
u′′ = 1, u(0) = 0, u′(1) = 0
u′′ = 1, u′(0) + u(0) = 0, u′(1) = 0
u′′ = 1, u(0) = u(1), u′(0) = u′(1)
u′′ = u, u(0) = 0, u(1) = 0
u′′ = u, u(0) = 0, u′(1) = 0
u′′ = −u, u(0) = 0, u(1) = 0

7 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Numerical solution of two-point BVP (11)

1 Define a grid on [a, b]. Easiest is uniform grid a = x0, x1, . . . xM = b. Here

h = b−a
M

, and xj = a+ jh.

2 Discretize. (Replace u′′(x) by D2
hu(x) =

u(x+h)−2u(x)+u(x−h)

h2 , and other
derivatives by difference quotients.)

3 Write the discrete equation to be satisfied by Uj−1, Uj , Uj+1 at every
interior node tj

4 Apply BC to U0 and UM

5 Collect all unknowns in U = [U0, U1, . . . UM−1, UM]T , and right-hand side
in F = [f0, f1, f2, . . . fM−1, fM]T . The entries f0, fM will be given from
boundary conditions.

6 Identify the coefficients in steps 2,3 as components of a matrix A

7 Solve the linear system AU = F

Remark 1 (MATLAB numbering)

The nodes and unknowns above are numbered from 0, 1, . . .M . MATLAB does not
allow indexing from 0, so the unknowns in your code will likely be numbered
U1, . . . UM+1. The principles remain the same.

8 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Example: −u′′ = f on [a, b]
with Dirichlet BC u(a) = ua, u(b) = ub

Example 2.2 (Derive and solve the discrete system of equations)

Decide on M and h, h = b−a
M

.
Equation for internal nodes and boundary conditions

Interior nodes : 1
h2 (2Uj − Uj−1 − Uj+1) = f(tj), ∀j = 1, . . .M − 1 (12a)

Boundary nodes : U0 = ua, UM = ub. (12b)

Set-up an equivalent system of equations AU = F with

A =
1

h2


h2 0 . . . 0
−1 2 −1 . . .
. . .
. . . −1 2 −1
. . . h2

 , F =


ua
f(t1)
. . .

f(tM−1)
ub

 . (13)

Solve linear system AU = F . In MATLAB, write U=A\F

Note the first and last rows in (13) correspond to the boundary conditions, and
could be trivially eliminated. The numbering above is not MATLAB-like.

9 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Code for BVP from slide 9

Numbering, again (recall Remark 1)

When coding, the interior nodes will be numbered 2, . . .M , and boundary nodes
will be numbered 1 (left boundary) and M + 1 (right boundary). In particular,
when we apply the Dirichlet BC, we write U(1) = ua;U(M + 1) = ub, for the first
and last entries of U .

dx = (b-a)/(M); x = (a:dx:b)’; %% use uniform grid, x is numbered from 1...M+1

%% set up the matrix and the right hand side vector

f = rhsfun(x);

A = sparse(M+1,M+1);

for j=2:M

%% set up j’th internal row of the matrix

A(j,j) = 2; A(j,j-1) = -1; A(j,j+1) = -1;

end

A = A / (dx*dx);

%% apply the Dirichlet b.c. to the matrix and right hand side

A (1,1) = 1; f (1) = ua;

A (M+1,M+1) = 1; f (M+1) = ub;

%% solve the linear system;

U = A \ f;

This code can be vectorized for faster performance

10 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Solution to BVP from slide 9

Start assuming an exact solution u(t) = sin(πt).
Calculate (manufacture) f(t) = π2 sin(πt).
Implement the code and plot ...

h E(h,∞) E(h, 2)
0.1 0.008265 0.058
0.05 0.00205871 0.0015
0.01 0.0000822508 0.0000582

Test convergence in L∞ and L2 to see that E(h, ∗) = O(h2) for each
norm; see table.
(See below for a precise definition of norms, and convergence analysis).

11 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Analysis of convergence of FD for BVP
Define Ah ∈ R(M−1)×(M−1) to be the interior part of the matrix A from (13).

Remark 2 (Error analysis)

Writing the error equation we find AhE = τ where τ is the vector of
truncation errors τj (truncation errors on the boundary are 0).
Proving convergence

||E ||∗ → 0, as h→ 0 (14)

requires proving consistency and stability.

Here ∗ stands for the functional space in which we want to measure the error.

Consistency: with D2
h, the truncation error τj ≈ O(h2) if u ∈ C4

Stability: to keep ||E ||∗ = O(h2), we require ||A−1
h ||∗ ≤ C.

Choosing norm

We generally like to use ∗ to be L∞ space, but it is easier to get the
bound ||A−1

h ||L2 .

12 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Vector, matrix, function & grid function norms.
Remark 3 (Vector norms in lp spaces)

Rd 3 x, ||x ||p :=
(∑

j |xj |p
) 1
p
, 1 ≤ p <∞. ||x ||∞ = maxj |xj | . (15)

Remark 4 (Norms for functions and grid functions)

For functions f : [a, b]→ R we extend the lp vector norms to the norms in
Lebesgue spaces Lp of functions for which the integral below is well defined and
finite

||f ||p =

(∫ b

a
|f(x) |p dx

) 1
p

; 1 ≤ p <∞. ||f ||∞ = esssupx∈[a,b] |f(x) | . (16)

For grid functions f : ∆→ R (sampled on a grid ∆ = {x1, x2, . . . xM}) with
1 ≤ p <∞, we approximate these integrals with Riemann sums

||f ||∆,p =

∑
j

h |f(xj)) |p
 1
p

= h
1
p || [f(x1), . . . f(xj) . . . f(xM)]T ||p (17)

The text uses the same symbol || · ||p for the norms of vectors in Rd, functions on
R, or grid functions. We will use ||f ||∆,p for grid functions.

13 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Stability and convergence in the 2-norm

Remark 5 (Recall some matrix norms)

Rd×d 3 A, ||A ||1 = “max abs col sum′′ = maxj
∑
i |aij | (18)

Rd×d 3 A, ||A ||∞ = “max abs row sum′′ = maxi
∑
j |aij | (19)

The norm ||A ||2 =
√
ρ(ATA), where the spectral radius ρ(B) is the

largest to magnitude eigenvalue of matrix B.
For a symmetric real matrix ||A ||2 = ρ(A).

In MTH 452-552 we proved stability of FD solution to the
two-point Dirichlet BVP. . .

We have proved that ||A−1
h ||p ≤ C for p = 2,∞.

From this it follows for E = A−1
h τ that

||E ||∆,2 =
√
h ||E ||2 ≤

√
h ||A−1

h ||2 ||τ ||2 =
√
hCO(h2)

√
M = O(h2) (20)

||E ||∆,∞ = ||E ||∞ ≤||A−1
h ||∞ ||τ ||∞ ≤ CO(h2) = O(h2) (21)

14 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Two-point BVP; Neumann boundary conditions
Consider −u′′ = f, x ∈ (a, b);u(a) = ua, u

′(b) = gb .

To discretize, we modify (12b) in (12)

Interior : 1
h2 (2Uj − Uj−1 − Uj+1) = f(tj), ∀j = 1, . . .M−1 (22a)

Boundary : U0 = ua, (D∗hU)M = gb. (22b)

We have to choose the difference operator (D∗hU)M .

One-sided (D∗hU)M = UM−UM−1

h = gb, which is O(h) accurate

Two-sided (D∗hU)M = UM+1−UM−1

2h = gb, which is O(h2), but
introduces an additional unknown UM+1 and requires an
additional equation (e.g., we can write (22a) for j = M).

One-sided second order approximation (recall from MTH 4/552).

After the choice is made, write the system (22) as AU = F .

When choosing D∗h, note: if one can ensure that the system AU = F has a

symmetric matrix A, (i) proofs of stability in L2 are much easier, and (ii)

iterative linear solvers for sparse systems “like” spd A.

15 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Variable coefficients

Consider −(ku′)′ = f, x ∈ (a, b), u(a) = ua,−(ku′)(b) = qb .

Do it right

1. It is a BAD idea to apply the product rule to this problem.
2. Instead, we first discretize (DhU)j±1/2 at each point xj±1/2,
calculate k(xj±1/2)(DhU)j±1/2, and apply Dh again.

The analogue of (22a) is now

− 1

h

(
k(xj+1/2)

U j+1 − U j

h
− k(xj−1/2)

U j − U j−1

h

)
= f(xj) (23)

Next we discretize the flux condition −(ku′)(b) = qb with, say,
one-sided approximation.
Finally we set up the system AU = F , and solve.
Ex.: Attempt LTE analysis assuming k(x) is smooth. Also, write the

linear system to be solved

16 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Solving BVP in Rd, d > 1
We first consider d = 2 and the Laplace operator

∆ = ∇2 = ∂2

∂x2 + ∂2

∂y2 . (in d = 3 we add ∂2

∂z2).

Consider an open bounded domain Ω ⊂ Rd, with the boundary ∂Ω
which is (at least) piecewise smooth. Our model problem is the
Poisson’s equation with homogeneous Dirichlet BC.

−∆u = f, x ∈ Ω, (24a)

u|∂Ω = 0. (24b)

The E/U theory for (24) is more complicated than for (11).

From now on we will always assume that the unique solution exists
and is smooth enough for the approximation to make sense.

Remark 6

More generally than (24) one can consider other elliptic PDEs with
variable coefficients and lower order terms.

17 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

FD for (24)

It is fairly natural to generalize the discretization of − d2

dx2 in (11) to

the discretization of − ∂2

∂x2 − ∂2

∂y2 in (24).

We need a grid in x and y directions (with step sizes hx and hy,
respectively). Points are numbered with i, j. We approximate
u(xi, yj) ≈ U i,j .
We can easily write the analogues of (22a) for (24a)

1

h2
x

(2U i,j − U i−1,j − U i+1,j) +
1

h2
y

(2U i,j − U i,j−1 − U i,j+1) = f(xi, yj), (25a)

(xi, yj) ∈ Ω

We can set-up boundary conditions for (24b)

U i,j = 0, (xi, yj) ∈ ∂Ω (25b)

Challenge: How to implement (25) as AU = F , and solve it.

“PDEs are easy, boundary conditions are difficult” (RES) 18 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

When Ω = unit square = (0, 1)× (0, 1)
The solution to “How to implement (25) as AU = F ” is

particularly simple. Below we show one (of many) way(s).

Define grid: uniform with hx = 1
Mx

, hy = 1
My

.

The grid points xi = (i− 1)hx, i = 1, . . .Mx + 1, yj = (j − 1)hy , j = 1, . . .My + 1.
The interior points (xi, yj) have 2 ≤ i ≤Mx, and 2 ≤ j ≤My .
The boundary points have numbers as follows . . .
start with i = 1 (xi = 0, West=left)
or i = Mx + 1 (xi = 1, East=right),
or j = 1 (yj = 0, South=bottom),
or j = My + 1 (yj = 1, North=top).

Lexicographic numbering of unknowns, and coding

We need to order (i, j), assigning a “global” index to each. It should be easy to go
both ways (i, j)↔ index, and to recognize which nodes are on the boundary.
For example, index(i, j) = (j − 1)(Mx + 1) + i assigns order row-wise.

This brings us to the second difficulty when coding: element (1, 1) is in upper left

corner of a matrix, while we usually associate (1, 1) on a grid with the lower left

corner. Also, i runs in rows, and j runs in columns. Keep this in mind when

interpreting! MATLAB also has functions meshgrid,flipud which can help.

19 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Code for numbering and indexing

ax=0;bx=1;ay=0;by=1;Mx=2;My=3;hx=(bx-ax)/Mx;hy=(by-ay)/My;

x=hx*(0:1:Mx);y=hy*(0:1:My);

[xx,yy]=meshgrid(x,y); %% ’’grid’’ has Mx columns and My rows

%%

zz = zeros(size(xx’));

for i=1:Mx+1,for j=1:My+1, myin(i,j) = myind(i,j,Mx,My); end end

%% show the numbering provided by index

myin,

%% show the numbering as intuition suggests

flipud(myin’),

%%

surfc(xx,yy,myin’);title(’Index of grid points’);pause;

%% show the interpretation of grid

surfc(xx,yy,xx/hx+yy/hy);title(’Affine function of grid-points’);

%% draw just the mesh

mesh(xx,yy,myin’);

%%%%%%%%%%%%%%%%%%%%%%%

function ind=myind(i,j,Mx,My)

ind=(j-1)*(Mx+1) + i;

end

There are other and better ways to do it but we will stick to this format!

20 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Code for solving (24) ... continue previous

%%%

Nall = (Mx+1)*(My+1);F = sparse(Nall,1); A = sparse(Nall,Nall);

U=0*F; Uexact=0*F; interior_nodes = [];

for i=2:Mx,for j=2:My

me = myin(i,j); interior_nodes = [interior_nodes,me];

F(me)= rhsfun(x(i),y(j)); Uexact(me) = exactfun(x(i),y(j));

end

end

%%%

for i=2:Mx, for j=2:My, me = myin(i,j);

mel=myin(i-1,j);mer=myin(i+1,j);meb=myin(i,j-1);met=myin(i,j+1);

%%

A(me,me)=2/hx^2+2/hy^2;

%% neighbors might be on the boundary.

A(me,mel)=-1/hx^2;if ismember(mel,interior_nodes),A(mel,me)=-1/hx^2;end

....

A(me,met)=-1/hy^2;if ismember(met,interior_nodes),A(met,me)=-1/hy^2;end

end

end

%% boundary conditions imposed explicitly

i=1; for j=1:My+1, me = myin(i,j); A(me,me)=1; end

...

j=My+1; for i=1:Mx+1, me = myin(i,j); A(me,me)=1; end

There are more elegant ways to do it but we shortened the code for the

exposition’s sake. Some code is redundant and could be simplified.

21 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Code for solving (24) ... continue ...

%%%

...

U = A\F;

%% unpack the solution

for i=1:Mx+1,for j=1:My+1,

me=myin(i,j);

Uplot(i,j)=U(me);Uexactplot(i,j)=Uexact(me);

end; end

%% plot and check convergence

surf(xx,yy,Uplot’);title(’Numerical solution’);

fprintf(’Error =%g\n’,norm(Uexact-U,inf));

h = hx = hy E(h,∞) E(h, 2)
0.1 0.00826542 0.00413271
0.05 0.00205871 0.00102935
0.01 8.22508e-05 4.11254e-05

The result for a problem with u(x, y) = sin(πx) sin(πy) is plotted below.

22 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Addressing Challenge of Complexity

We mentioned before the challenge how to solve AU = F .
In MATLAB, we simply wrote U=A\F.
This is OK for class, but in general it is an incredible challenge.

Assume Mx = My = Mz = M,hx = hy = hz = h

The matrix A ∈ RN×N is spd and sparse (banded) but N = O(Md). The
band size is b = O(Nd−1), and factorization (such as LU) will require at
least O(Nb) operations.

The condition number of A increases as O(h−2), thus accuracy may be an
issue, and iterative solvers such as CG will require many iterations.

The best solvers for (25) in d = 2, 3 are from the multigrid family of linear
solvers or Fast Poisson solvers (e.g., FFT), which scale as low as O(N).
However, these do not always apply well to variable coefficients or grids.

Will all that is said above, however, in a textbook code for Poisson’s
problem, the bulk of the time is spent on setting up rather thansolving
AU = F .

23 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Proving convergence of FD
for an elliptic equation

We write the error equation

AE = τ. (26)

We need to prove (i) consistency, and (ii) stability.

To prove consistency, we calculate LTE. (For (24) and 5-point
stencil D2

h we obtain τ = O(h2
x + h2

y) provided u ∈ C4)

To prove stability, we need a bound ||A−1 ||?.

For a simple region Ω, and Dirichlet BC one can find the
eigenvalues and eigenfunctions of −∆ easily. From this, one
can infer the eigenvalues of A similarly as it was done for a
two-point bvp. A bound for ||A−1 ||2 follows.
For more general elliptic problems and BC, general domains
Ω, and norms other than “2” this proof may not be trivial.

24 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Addressing Challenge of (non-)Smoothness

Remark 7

FD solution to Poisson’s equation (24) using the approach described
above (with 5-point stencil in d = 2) can be shown to be O(h2)
accurate (h = max(hx, hy, . . .)), provided the solution and data are
smooth enough. The proof combines consistency analysis and stability.

When the data (f , coefficients, or Ω) are rough, FD may not be the best
numerical approximation method, since likely u 6∈ C4(Ω).
Instead, one could resort to the weak (variational) formulations of (24), and
to other methods such as FE (Finite Elements).

In contrast, if the solutions are very smooth, one could be interested in a
method of higher order than the 5-point stencil FD (only O(h2) accurate).
Possibilities include a larger stencil for FD, or the use of spectral methods.
However, these require solving a more dense linear system that that for FD.

FE and spectral methods approximate the functions u(x) rather than their
values u(xi) at the grid points. Their error is measured in norms such as
Lp(Ω), Ck(Ω).

25 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Solving general elliptic BVP with FD
Consider

−∇(K(x, y)∇u) + . . . lower order terms = f (27)

Remark 8

For this pbm to be elliptic, we need the matrix coefficient
K(x, y) ∈ R2×2 to be uniformly positive definite. (Uniformly means
the eigenvalues of K(x, y) for all (x, y) ∈ Ω are bounded below).

FD approximation to (27)

If K : Ω→ R, or is a diagonal matrix, then 5-pt stencil suffices.

If mixed derivatives are present, 9-pt stencil is needed.

If higher-order approximation is desired, one can use, e.g.,
Richardson extrapolation

Ex: find higher order approximation to −u′′, and extend to −∆u. What

is the band size of the linear system when solving on an Mx ×My grid?

What should happen near boundaries?

26 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Type of PDE (in R2)

Canonical types

elliptic: uξξ + uηη = . . .,

hyperbolic: uξξ − uηη = . . ., or uξη = . . .

parabolic: uξ − uηη =

Here . . . means lower order terms.

Type of a general PDE

If PDE has constant coefficients in the leading terms, we attempt to
find a change of variable that will turn it to one of these canonical
types. Then we associate with the PDE the type of that canonical
type.
If the coefficients are variable, or depend on u, we (try to) do the
same, but the PDE may have a different type in different regions of
(x, y) or may change type depending on u.

27 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Non-stationary problems

Previously, we considered equilibrium problems such as
−u′′ = f or −∆u = f .

These are the stationary analogues of the problems below

Parabolic (Dissipative): Heat/diffusion equation or in Ω ⊂ Rd

ut −∆u = f (28)

Needs BC on ∂Ω and IC u(x, 0) = u0(x)
Finite dimensional analogue: U ′ +AU = F,U(0) = U0

where A is positive definite

Hyperbolic (Conservative): Wave equation

utt −∆u = 0 (29)

Needs BC and IC u(x, 0) = u0(x), ut(x, 0) = u1(x)
Finite dimensional analogue:
U ′′ +AU = F,U(0) = U0, U

′(0) = U1 where A is positive
definite

28 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

FD for parabolic problems

Consider heat equation ut − uxx = f(x, t) in R supplemented
with initial and homogeneous Dirichlet boundary conditions

First, we discretize in space on a spatial grid ∆ = {x0, . . . xM}, with
h = b−a

M , approximating Uj(t) ≈ u(xj , t).
Note change of notation from superscripts Uj to subscripts Uj

The interior equations for j = 1, . . .M -1 are found by using
(D2,x

h U(t))j ≈ −uxx(xj , t), with the notation as in (22a).

U ′j(t) +
1

h2
(2Uj(t)− Uj−1(t)− Uj+1(t)) = fj(t), j = 1, . . .M−1(30a)

U0(t) = 0, UM (t) = 0.(30b)

After we eliminate U0(t), UM (t) using (30b) from (30a), we can write
the resulting discrete system of equations in vector form for
U(t) = [U1, . . . UM−1]

U ′ +AU = F. (31)

The problem (31) is called semi-discrete.
29 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Discretize in time

Discretization in time on a time grid is applied to (31). For example, we can
choose uniform time-stepping with step ∆t, and some one-step method with
(Dt∆tU)(n) ≈ U ′(tn) to yield

1

∆t
(Un − Un−1) +AUn∗ = F. (32)

Here n∗ = n− 1, or n∗ = n, or n∗ = n− 1
2

, indicate whether we use an explicit
(FE) or implicit method such as BE or (CN) Crank-Nicholson (trapezoidal
method).

Example 5.1 (Fully discrete equations (BE))

At every time step n = 1, 2, . . . we solve

1

∆t
(Unj − Un−1) +

1

h2
(2Unj − Unj−1 − Unj+1) = fnj , j = 1, . . .M−1 (33a)

Un0 = 0, UnM = 0. (33b)

One can arrive at (33) by first discretizing in time, and next in space.
Rewrite an analogue of (33) with trapezoidal or FE time-stepping.

30 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Choose variant of time-stepping

The choice of time-stepping determines the stability, ease of
implementation, and computational complexity.

See summary below and details in the next slides.

FE is only conditionally stable, O(∆t+ h2) accurate, and is
inexpensive

Un = Un−1 + ∆tFn−1 −∆tAUn−1 = (I −∆tA)Un−1 + ∆tFn−1 (34)

BE is always stable and O(τ + h2) accurate, but requires a linear
solver

(I + ∆tA)Un = ∆tFn + Un (35)

Trapezoidal (CN) method is always stable and O(∆t2 + h2)
accurate, but requires a solve

(I +
∆t

2
A)Un =

∆t

2
(Fn + Fn−1) + (I − ∆t

2
A)Un−1 (36)

31 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Stability analysis for one-step methods for IVP
For a system of ODEs such as u′ = f(t, u), we found that all of FE,
BE, and trapezoidal schemes are zero-stable, and this sufficed for
convergence, regardless of the Lipschitz constant L of f . However, the
error bound increases with time T as O(T exp(LT)).

Example 5.2 (Zero-stability but no convergence for (31))

Here L =||A || increases with O(h−2) as h→ 0, and this does not give convergence
unless additional conditions on ∆t hold. (The problem is increasingly stiff as
h→ 0).

On the other hand, for a linear problem (test equation u′ = λu), recall
the region of absolute stability for some one-step method. If z = λ∆t
is in this region, the growth factor R(z) is bounded by 1; and the
error bound grows linearly with T regardless of L.

Example 5.3 (Recall R(z) for FE, BE, CN)

These are, respectively, R(z) = 1 + z, R(z) = (1− z)−1, R(z) =
1+ z

2
1− z

2
.

For a system u′ = Cu, we would require that z is in the absolute
stability region for all eigenvalues λ(C).

32 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Stability of time-stepping for the heat equation

In the slides below we consider time-stepping for (31) written as

U ′ = −AU + F. (37)

For Dirichlet bc, A is spd, and ||A ||2 = ρ(A) = 4
h2 .

Example 5.4 (Growth factor R(z) for FE, BE, CN applied to (37))

These are R(z) = 1−∆tλ(A), R(z) = (1 + ∆tλ(A))−1, R(z) =
1−∆tλ(A)

2

1+
∆tλ(A)

2

.

It is also helpful to see each of (34), (35), (36) written as

Un = BUn−1 + bn. (38)

In the error equation we work with ||B || to see how the error bound grows. The

analysis of ||B ||2 is equivalent to that of R(z) as in Ex. 5.3.
Ex.: work out the details of a stability constraint for ut − k∆u = f,

with homogeneous Dirichlet or homogeneous Neumann b.c.

33 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Stability for the heat equation in || · || 2, cd
Example 5.5 (Conditional stability of FE (34))

Here we need to ensure that the eigenvalues of B = I −∆tA given by 1−∆tλ(A)
are bounded by 1. Choosing the largest eigenvalue of A we find asymptotically
that these are given by 1−∆t 4

h2 .
A bit of algebra gives that
∆t
h2 ≤ 1

2
is the condition for stability of FE for the heat equation .

Example 5.6 (Unconditional stability for BE (35))

We need to show that the eigenvalues of B = (I + ∆tA)−1, given by 1
1+∆tλ(A)

,

are bounded by 1. Since A is positive definite, we find the stability to hold

unconditionally for BE .

Example 5.7 (Unconditional stability for CN (36))

Here B = (I + ∆t
2
A)−1(1− ∆t

2
A). We find that its eigenvalues are given by

1−∆t
2
λ(A)

1+ ∆t
2
λ(A)

. Since A is positive definite, we find that they are bounded by 1

unconditionally for CN .

Compare these results to the analysis of R(z)
34 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Convergence theory

Now we write the error equation for FE En = BEn−1 + ∆tτn .
A similar equation can be derived for BE, CN.

A few steps of inequalities give that ||En ||2 → 0 as h,∆t→ 0,
provided the stability holds.

Theorem 5.8 (Lax-Richtmyer stability and Lax Equivalence
Theorem)

Consider the fully discrete method written as (37). The method is
strongly stable if ||B ||2 ≤ 1, and stable if ||Bn ||2 ≤ CT , where CT is
allowed to grow in time with T . A consistent method converges iff it is
stable.

Remark 9 (Summary of convergence for FE, BE, CN)

Based on the analysis above, we find that the results summarized on
slide 31 hold.

35 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Implementation: FE for the heat equation

Combine the FE-code (4/552) with code from slide 22.

%% set up spatial grid x, matrix A, and initial guess

x = ... ; A ; u0 = uexact(x,0); uFEprev = u0; steperr=0;

%% set up the discretization

T=1;tsteps=(0:dt:T)’;nsteps=length(tsteps);

%% time stepping loop

for n=2:nsteps

%% calculate rhside; change boundary conditions if needed

f = rhsfun(x,tsteps(n-1)); ...

%% calculate the numerical solution, new time step

uFE = uFEprev + dt*f -dt*A*uFEprev;

%% plot, calculate error

plot(x,uexactsol,’-’,x,uFE,’*’); steperr= max(steperr,...)...

uFEprev = uFE;

end

%% report on the error

...

Ex: implement BE: structure quite different

36 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Another approach to stability in || · || 2
via Fourier analysis

For linear PDEs with constant coefficients, Fourier analysis (and the
associated von-Neumann Ansatz) are quite useful. We pose the PDE
(28) on R, or impose periodic b.c., and assume homogeneity f = 0.

Von-Neumann Ansatz: assume Un−1
j = eijhξ for FD discretization of (28).

Plug this to the discrete equation for each j.

Calculate the amplification factor ρ(ξ) so that Unj = ρ(ξ)Un−1
j .

Find conditions on ∆t so that |ρ(ξ) |≤ 1.

Example 5.9 (FE conditional stability via von-Neumann)

We find ρ(ξ) = 1− 2 2τ
h2 (1− cos(ξh)), and after some algebra we find the same

stability condition as in Ex. 5.5.

Ex: Carry out the calculations of ρ(ξ) for BE and CN methods
Ex: For multi-step methods such as DuFort-Frankel, consider the

amplification matrix G(ξ), and check its norm

37 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Why von-Neumann works; discrete Fourier
transform

Continuous Fourier transform L2(R) 3 S → Ŝ ∈ L2(R)

... transforms functions S(x) to functions Ŝ(ξ) := 1√
2π

∫
R s(x)e−iξxdx.

Via Parseval’s identify ||S ||2 =|| Ŝ ||2.

Analysis of FD: use discrete Fourier transform

We are interested in grid functions on h-grid,
l2(R) 3 S = (Sj)j → Ŝ = (Ŝ(ξ))ξ ∈ L2(−π/h, π/h) defined as

Ŝ(ξ) = h√
2π

∑
j Sje

−ijhξ, and Sj = 1√
2π

∫ π/h
−π/h Ŝ(ξ)eijhξdξ.

The analogue of Parseval’s identity holds

||S ||∆,2 =

h∑
j

|Sj |2
 1

2

=|| Ŝ ||2 =

(∫ π/h

−π/h
| Ŝ(ξ) |2

) 1
2

(39)

Example 5.10 (Apply Fourier analysis to analyze the growth
Un−1 → Un)

Consider Un defined pointwise in (33a). Apply discrete F-transform to (33a)

Un → Ûn and study the growth factor ρ(ξ) so that Ûn(ξ) = ρ(ξ)Ûn−1(ξ). Thanks
to the Parseval’s identity we get ||Un ||∆,2 =|ρ(ξ) |||Un−1 ||∆,2. It turns out this is
equivalent to the von-Neumann Ansatz!

38 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Practical way to use von-Neumann Ansatz
Sometimes instead of writing Unj = eijhξ as on slide 37, and deriving

ρ(ξ) to have Unj = ρ(ξ)Un−1
j , it is convenient to write

Unj = ρne
−ijhξ, Un−1

j = ρn−1e
−ijhξ (40)

where ρn, ρn−1 are the amplitudes of the grid value Unj , U
n−1
j

respectively. Then we find the amplification factor ρ(ξ) = ρn
ρn−1

.
This technique is useful when dealing with multi-step schemes. For multi-step
schemes, we derive an amplification matrix G(ξ) which replaces ρ(ξ). For stability
then we want ||G(ξ) ||2 ≤ 1.

Example 5.11 (FE, BE, and CN with von Neumann Ansatz for the heat
equation)

. . . carry out the calculations compare to the analysis via MOL and RABS .

Ex.: Derive the amplification matrix G(ξ) for the midpoint method

applied to the heat equation. To deal with the steps Un, Un−1, Un−2,

rename Un−2 = V n−1, and rewrite your equations as a system involving

Un, Un−1, and V n−1 in one equation, and V n = Un−1 in the second

equation. Attempt to derive conditions on ∆t so that ||G(ξ) ||2 ≤ 1.

39 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

FD for advection (convection) equation
We start with the first order homogeneous hyperbolic equation, with
constant coefficients

ut + aux = 0. (41)

It must be supplemented with some auxiliary (non-characteristic)
data in order to be well posed.

Example 6.1 (Advection pbm with initial data u(x, 0) = u0(x), x ∈ R)

If you supplement (41) with IC, and if u0(·) is smooth enough, then
u(x, t) = u0(x− at) is the unique solution for x ∈ R, t ∈ R. The lines

x− at = const are the characteristics along which the solution remains constant.

Example 6.2 (Advection on a bounded domain, inflow condition)

When x ∈ (0, L), we require boundary conditions for (41), such as on the inflow
boundary. If a > 0, the inflow boundary is at x = 0. If a < 0, it is at x = L.

ut + aux = 0, x ∈ (0, L), t > 0; u(x, u) = u0(x); u(0, t) = g0(t). (42)

To have a smooth solution, compatibility u0(0) = g0(0) must be imposed in (42)

40 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Additional BC, and FD discretization

Example 6.3 (Advection with periodic BC)

Periodic boundary condition can be imposed as well

ut + aux = 0, u(x, 0) = u0(x), u(0, t) = u(L, t); t > 0, x ∈ (0, L), t > 0. (43)

These are less common in practical application. However, analysis of FD schemes
for (43) avoids a lot of technical non-essential calculations that are required for
(42).

FD for (41): a plethora of schemes

The experience you gained so far suggests many different ways to discretize (41),

leading to different (consistency) order of LTE, and corresponding to different

stencils. It is clear however that stability is a crucial factor determining whether a

scheme is convergent. We will assess it via MOL and von-Neumann analysis.

First, we discretize in space, and consider a uniform grid over (0, L)
discretized with xj = jh, j = 0, 1, . . .M , and h = L

M .

We also set ν = a∆t
h (the “Courant number” of CFL number). The

value of ν is usually constrained to ensure stability.
41 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Simplest code for advection equation (43)

Use first order conditionally stable scheme (analysis later)

%% set up initial data

x=(0:dx:1)’; uprev = uinit(x); unew = 0*uprev;t = 0; n= 0;

%%

plot(x,uprev);title(sprintf(’Initial condition at t=%g’,t));pause;

while t < 1

%% advance to new time step

t = t + dt; n = n+1;

unew(2:end) = uprev(2:end) - nu*(uprev(2:end)-uprev(1:end-1));

unew(1) = uprev(end);

%% plot, compare with true solution ...?

plot(x,unew);title(sprintf(’Numerical solution at t=%g’,t));pause;

%% calculate error

uprev = unew;

end

end

This code can be made even more compact for faster performance. For example,

you can use circshift. This code can also be rewritten without vectorization with

a loop, so it is more clear but slower. Compare!

42 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

MOL analysis for advection equation
We approximate the solution vector U(t) = (Uj(t))

M
j=0 using the PDE

and the boundary conditions. Either way, the rank of matrix A is M .
A semidiscrete scheme for (42) or (43) reads

U ′(t) +AU = 0. (44)

The matrix A depends on the particular difference quotient used
for ux, and on the boundary conditions. The decision how to
approximate ut|(xj ,tn) gives rise to a variety of schemes, with
different consistency and different stability properties.

Next, we discretize (44) in time for 0 = t0 < t1, . . . tn = n∆t,

When choosing a time discretization scheme, we must ensure
that the scheme is Lax-Richtmyer stable. This will depend both
on the time discretization scheme as well as on A.

In the end, the scheme we implement is fully discrete in space
and time and finds Unj ≈ u(xj , tn).

43 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

One-sided scheme for aux at (xj, tn)

We have either aux|(xj ,tn) ≈ a
Unj+1−U

n
j

h (downwind)

or aux|(xj ,tn) ≈ a
Unj −U

n
j−1

h (upwind).
If a > 0, which do you think makes more sense?
Fully discrete schemes:

ut|(xj ,tn) ≈
Un+1
j −Unj

∆t
is O(∆t+ h) accurate, but leads to FE scheme with

ρ(ξ) = . . .

ut|(xj ,tn) ≈
Un+1
j −Un−1

j

2∆t
would be O(∆t2 + h) accurate. But, calculate

G(ξ) = ... (amplification matrix)

ut|(xj ,tn) ≈
Unj −U

n−1
j

∆t
is O(∆t+ h) accurate, and is an implicit scheme with

ρ(ξ) = . . . (see below)

Verify the LTE order as stated and check the stability calculations via

MOL or von-Neumann

44 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Central scheme for aux at (xj, tn)

With the central scheme, we have aux|(xj ,tn) ≈ a
Unj+1−U

n
j−1

2h .
The decision how to approximate ut|(xj ,tn) gives rise to a
variety of schemes, with different consistency and different
stability properties.

ut|(xj ,tn) ≈
Un+1
j −Unj

∆t
is O(∆t+ h2) accurate, but leads to FE scheme with

ρ(ξ) = . . . (see below)

ut|(xj ,tn) ≈
Un+1
j −Un−1

j

2∆t
is second order accurate, and is the midpoint

scheme (in time). The method is called “leapfrog”. To analyze via
von-Neumann we need to use the two-step approach outlined on slide 39.
Instead, we can consider checking the region RABS for the midpoint method
for the eigenvalues.

ut|(xj ,tn) ≈
Un+1
j − 1

2
(Unj−1+Unj+1)

∆t
is consistent (see below), and is known as

Lax-Friedrichs scheme. We calculate ρ(ξ) = cos(ξh)− νi sin(ξh).

Calculate the LTE for the Lax-Friedrichs scheme. Also, go over

stability calculations for the other schemes listed here and the next,

including their time-implicit versions

45 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Methods which correct instabilities: LW and
BW

As you (likely) saw, an explicit in time scheme combined with central
difference in space is unstable, period. Instability could be corrected
by adding “just enough” (numerical) diffusion to correct it.

Example 6.4 (Lax-Wendroff; requires |ν |≤ 1.)

By choosing just the right amount of diffusion D = a2∆t
2

, the LW scheme also
becomes higher order accurate.

Un+1
j − Unj

∆t
+ a

Unj+1 − Unj−1

2h
+
a2∆t

2h2
(2Unj − Unj−1 − Unj+1) = 0 (45)

Example 6.5 (Beam-Warming; requires |ν |≤ 2 and sign(ν) = sign(a).)

Another possibility is to correct the one-sided upwind scheme with a higher order
one-sided scheme in space, and correct (the instability) similarly as LW.

Carry out the details please to convince yourself of the claims made on

LW and BW.

46 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Modified equation: reveals issues

Modified equation is the PDE satisfied (approximately) by a function
v(x, t) which satisfies exactly the finite difference scheme. (Unlike in
the LTE analysis where we look for the error of when the exact
solution to the PDE satisfies approximately the scheme).

Modified equations are typically either

diffusion type vt + avx = Dvxx, or

dispersive vt + avx = µvxxx.

Example 6.6 (The upwind and Lax-Friedrichs schemes are “diffusive”)

... with Dupwind = ah
2

(1− ν), and DLF = h2

2∆t
(1− ν2).

Example 6.7 (Lax-Wendroff and Beam-Warming are “dispersive”)

.. with µ = O(h
2

2
a(ν2 − 1)), and µ = O(h

2

6
a(2− 3ν + ν2)).

Be sure to know the details of the calculations of the modified equation

47 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Activity on schemes for ut + aux = 0, a > 0

Connect the Method with its Stencil, LTE, Stability & Properties

Note: the cells in the table below are NOT aligned.

(1) FTBS (upwind)

(2) BTBS

(3) CTBS

(4) CTCS (leapfrog)

(5) FTCS

.

(6) LF

(7) LW

(8) BW

A

B

C

D

E

F

G

H

(a)

(b) O(∆t + h)

(c) O(∆t2 + h2)

(d)

(e) O(∆t2 + h)

(f) O(∆t + h)

(g)

(h) O(∆t + h2)

I. never stable

II. stable if 0 ≤ ν ≤ 1,
diffusive

III. stable if . . . ,
dispersive

IV.

V. stable if |ν |≤ 1,
oscillations

VI.

VII. stable if 0 ≤ ν ≤ 1,
very diffusive

VIII. unstable unless . . .

48 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

FD for mixed equations: ADR

Advection-diffusion-reaction problem

ut + aux −Duxx + ru = f(x), x ∈ (0, 1), t > 0. (46)

Here we assume D > 0 (for well-posedness). Also, wlog, a ≥ 0. The
reaction term coefficient r ≥ 0 for decay/absorption, and r ≤ 0 for
growth.

The problem requires an I.C.

u(x, 0) = uinit(x), x ∈ (0, 1), (47)

and some boundary conditions. Assume homogeneous Dirichlet condition at x = 0.

u(0, t) = 0, t > 0. (48)

On the outflow end x = 1

Dirichlet condition u(1, t) = 0 may lead to a boundary layer at x = 1.

Outflow condition Dux(1, t) = 0 allows the solution to “smoothly” cross the
boundary x = 1.

49 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Finite difference scheme(s) for ADR

It is straightforward to apply the FD to (46), by using the
discretization methods that worked well for the individual pieces,
while observing the consistency order and stability of the schemes as
they apply to the subproblems.

Fully implicit schemes are unconditionally stable but . . .

Fully explicit schemes are (perhaps) conditionally stable if . . .

Implicit-explicit schemes can combine advantages of the
individual schemes

Fractional step methods (operator splitting)

. . . allow to solve subproblems independently. A common (first order
accurate) approach for (46) is to solve them in steps A→R→D, using
Un as data for step A which delivers UA, to be used for R step, which
produces UR, to be used as data for D step. The last solves for Un+1.
Other splitting algorithms are possible.

50 / 51

Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Recap of what we’ve done

We focused on: scalar linear PDEs with constant coefficients, of
canonical type, with smooth solutions

hyperbolic PDEs are conservative and parabolic are
dissipative
elliptic PDEs are stationary solutions to the transient pbms
“PDEs are easy, boundary conditions are hard”

Current challenges in PDEs involve solving nonlinear coupled systems of

mixed type, with nonsmooth (very weak) solutions

We focused on the following numerical (class of) methods: FD.
FD require (high) smoothness of true solutions for optimal
convergence. FD approximate the values u(xj) rather than the
function u(x)
Other methods may be better suited to nonlinear non-smooth problems with

heterogeneous data

In NA/scientific computing, we deal with the compromise...

... between accuracy and efficiency. High accuracy requires a lot of
computational time.

51 / 51

	Lecture 1
	(Recap FD for Dirichlet BVP)
	2-3
	4-6
	7-12
	13-15
	16-21
	22-end

