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Introduction and Overview

These notes are intended to . . . . . . . . . . . .supplement rather than replace any
textbook material or material covered in lectures.
Examples will be worked out in class.
I will use material from several references

[RJL]. R.J. LeVeque, Finite Difference Methods for ODEs and
PDEs, SIAM 2007

[IK] Isaacson, Keller, Analysis of Numerical Methods

[QV] Quarteroni, Valli, Numerical Approximation of Partial
Differential Equations, Springer, Second Ed., 1997

The purpose ... (by Richard Hamming)

”The purpose of computing is insight, not numbers”

”The purpose of analysis is to solve problems, not create pretty
theorems”
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PDE types
Consider u = u(t, x, y, . . .), or u : Ω ∈ Rn → R which solves

F (u, ut, ux, uy, . . . , utx, uty, utt, uxx, uyy, uxy, . . .) = 0 (1)

1 The PDE (1) must be supplemented with appropriate boundary
and/or initial conditions on ∂Ω. We will consider BVP, IVP, and
IBVP.

2 Does the solution to (1) (with the additional conditions) exist?
Is it unique? How does it depend on its data? Is the problem
well-posed?

3 What is the qualitative nature of solutions and their regularity?

4 In principle, higher order PDEs can be converted to systems of
lower order, but this does not help much in analysis/solving
except in special circumstances.

5 Numerical methods have to honor the behavior.
Suggested review/reading: Guenter/Lee text; other MTH 621-* or MTH 4/582.
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Examples of PDEs of canonical types and not
Recognize . . .

Order, linear/nonlinear, what conditions (BVP, IVP, IBVP) needed.
Application/name ?

ut + aux = 0; ut + uux = 0; ut + (
u2

2
)x = 0; ut + (ux)2 = 0 (2)

−uxx − uyy = 0; −∆u = f ; (3)

ut − uxx = 0; ut −∇ · (k(x, y)∇u(x, u)) = f ; (4)

ut −∇ · (k(u)∇u) = 0; (5)

ut + aux − kuxx = f(u), ut +∇ · g(u)−∇ · (k(x, y, u)∇u) = f(u) (6)

utt − uxx = 0; utt + ut = ∆u (7)

−µ∆u = −∇p, ∇ · u = 0, or ut − u · ∇u− µ∆u = −∇p, ∇ · u = 0 (8)

NOT (just) PDEs:

ut +

∫ t

0
e−(t−s)ut(s)ds− uxx = 0 (9)

ut +

∫
Ω
k(x)u(x)dx− uxx = 0 (10)
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What we have covered in other classes

MTH 452/552, Basic methods for BVP and IVP

BVP solvers for −u′′ = f :

Approximate as −(D2
hU)j = fj ; apply BC, solve linear

system
Error analysis for BVP solvers:
Consistency & Stability ≡ Convergence
LTE of O(hp) & Bounds for ||A−1 ||∗ ≡ ||Eh ||† = O(hp).
Norm choice † depends on ∗ and p

IVP solvers for u′ = f(t, u) : single-step and LMM methods

What we have not covered

Non-Dirichlet BC; higher order methods, non-uniform grids

How to extend to BVP in Ω ⊂ Rd, d > 1; −∇ · (K∇u) = f

How to treat IBVP, e.g., for ut − uxx = f

How to solve large sparse linear systems (see MTH 451-551) 5 / 28
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Outline of class

Two-point BVP, general BC, variable coefficients
Recall 4/552 material; expand the theory, implementation, and applications

Laplace equation −∆u = 0 and more generally −∇ · (K∇u) = f

Heat (diffusion) equation ut −∆u = f

Wave equation utt −∆u = 0

Advection/transport equation ut + aux = 0

Other: in particular, ADR ut + aux − duxx = f(u).

Methods, math/ implementation/ applications content

We will focus on FD (finite differences). However, other methods such
as FE (finite elements), and spectral methods will be mentioned.
Code templates will be provided.
We will study, as always, consistency, stability, convergence.

Interplay of discretization in t and x will be important.

6 / 28



Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Recall the two-point BVP (MTH 452/552)
Conditions in linear two-point constant coefficient BVP

u′′ +mu′ + nu = f(x), x ∈ [a, b];u(a) = ua, u(b) = ub (11)

Condition u(a) = ua is known as Dirichlet condition, u′(a) = ub is known as

Neumann condition, u′(a) + Cu(a) = uc is known as the Robin condition. One

can also impose periodic conditions, e.g., u(a) = u(b), u′(a) = u′(b). If the data

equals 0, we call the BC homogeneous.

Example 2.1 (Existence and uniqueness of solutions depending on BC)

Consider x ∈ [0, 1]. Find the general solution and determine if the solution exists
and if it is unique.
u′′ = 0, u(0) = 0, u(1) = 0
u′′ = 1, u(0) = 0, u(1) = 0
u′′ = 1, u′(0) = 0, u′(1) = 0
u′′ = 1, u(0) = 0, u′(1) = 0
u′′ = 1, u′(0) + u(0) = 0, u′(1) = 0
u′′ = 1, u(0) = u(1), u′(0) = u′(1)
u′′ = u, u(0) = 0, u(1) = 0
u′′ = u, u(0) = 0, u′(1) = 0
u′′ = −u, u(0) = 0, u(1) = 0
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Numerical solution of two-point BVP (11)

1 Define a grid on [a, b]. Easiest is uniform grid a = x0, x1, . . . xM = b. Here

h = b−a
M

, and xj = a+ jh.

2 Discretize. (Replace u′′(x) by D2
hu(x) =

u(x+h)−2u(x)+u(x−h)

h2 , and other
derivatives by difference quotients.)

3 Write the discrete equation to be satisfied by Uj−1, Uj , Uj+1 at every
interior node tj

4 Apply BC to U0 and UM

5 Collect all unknowns in U = [U0, U1, . . . UM−1, UM ]T , and right-hand side
in F = [f0, f1, f2, . . . fM−1, fM ]T . The entries f0, fM will be given from
boundary conditions.

6 Identify the coefficients in steps 2,3 as components of a matrix A

7 Solve the linear system AU = F

Remark 1 (MATLAB numbering)

The nodes and unknowns above are numbered from 0, 1, . . .M . MATLAB does not
allow indexing from 0, so the unknowns in your code will likely be numbered
U1, . . . UM+1. The principles remain the same.
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Example: −u′′ = f on [a, b]
with Dirichlet BC u(a) = ua, u(b) = ub

Example 2.2 (Derive and solve the discrete system of equations)

Decide on M and h, h = b−a
M

.
Equation for internal nodes and boundary conditions

Interior nodes : 1
h2 (2Uj − Uj−1 − Uj+1) = f(tj), ∀j = 1, . . .M − 1 (12a)

Boundary nodes : U0 = ua, UM = ub. (12b)

Set-up an equivalent system of equations AU = F with

A =
1

h2


h2 0 . . . 0
−1 2 −1 . . .
. . .
. . . −1 2 −1
. . . h2

 , F =


ua
f(t1)
. . .

f(tM−1)
ub

 . (13)

Solve linear system AU = F . In MATLAB, write U=A\F

Note the first and last rows in (13) correspond to the boundary conditions, and
could be trivially eliminated. The numbering above is not MATLAB-like.
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Code for BVP from slide 9

Numbering, again (recall Remark 1)

When coding, the interior nodes will be numbered 2, . . .M , and boundary nodes
will be numbered 1 (left boundary) and M + 1 (right boundary). In particular,
when we apply the Dirichlet BC, we write U(1) = ua;U(M + 1) = ub, for the first
and last entries of U .

dx = (b-a)/(M); x = (a:dx:b)’; %% use uniform grid, x is numbered from 1...M+1

%% set up the matrix and the right hand side vector

f = rhsfun(x);

A = sparse(M+1,M+1);

for j=2:M

%% set up j’th internal row of the matrix

A(j,j) = 2; A(j,j-1) = -1; A(j,j+1) = -1;

end

A = A / (dx*dx);

%% apply the Dirichlet b.c. to the matrix and right hand side

A (1,1) = 1; f (1) = ua;

A (M+1,M+1) = 1; f (M+1) = ub;

%% solve the linear system;

U = A \ f;

This code can be vectorized for faster performance
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Solution to BVP from slide 9

Start assuming an exact solution u(t) = sin(πt).
Calculate (manufacture) f(t) = π2 sin(πt).
Implement the code and plot ...

h E(h,∞) E(h, 2)
0.1 0.008265 0.058
0.05 0.00205871 0.0015
0.01 0.0000822508 0.0000582

Test convergence in L∞ and L2 to see that E(h, ∗) = O(h2) for each
norm; see table.
(See below for a precise definition of norms, and convergence analysis).
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Analysis of convergence of FD for BVP
Define Ah ∈ R(M−1)×(M−1) to be the interior part of the matrix A from (13).

Remark 2 (Error analysis)

Writing the error equation we find AhE = τ where τ is the vector of
truncation errors τj (truncation errors on the boundary are 0).
Proving convergence

||E ||∗ → 0, as h→ 0 (14)

requires proving consistency and stability.

Here ∗ stands for the functional space in which we want to measure the error.

Consistency: with D2
h, the truncation error τj ≈ O(h2) if u ∈ C4

Stability: to keep ||E ||∗ = O(h2), we require ||A−1
h ||∗ ≤ C.

Choosing norm

We generally like to use ∗ to be L∞ space, but it is easier to get the
bound ||A−1

h ||L2 .
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Vector, matrix, function & grid function norms.
Remark 3 (Vector norms in lp spaces)

Rd 3 x, ||x ||p :=
(∑

j |xj |p
) 1

p
, 1 ≤ p <∞. ||x ||∞ = maxj |xj | . (15)

Remark 4 (Norms for functions and grid functions)

For functions f : [a, b]→ R we extend the lp vector norms to the norms in
Lebesgue spaces Lp of functions for which the integral below is well defined and
finite

||f ||p =

(∫ b

a
|f(x) |p dx

) 1
p

; 1 ≤ p <∞. ||f ||∞ = esssupx∈[a,b] |f(x) | . (16)

For grid functions f : ∆→ R (sampled on a grid ∆ = {x1, x2, . . . xM}) with
1 ≤ p <∞, we approximate these integrals with Riemann sums

||f ||∆,p =

∑
j

h |f(xj)) |p
 1

p

= h
1
p || [f(x1), . . . f(xj) . . . f(xM )]T ||p (17)

The text uses the same symbol || · ||p for the norms of vectors in Rd, functions on
R, or grid functions. We will use ||f ||∆,p for grid functions.
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Stability and convergence in the 2-norm

Remark 5 (Recall some matrix norms)

Rd×d 3 A, ||A ||1 = “max abs col sum′′ = maxj

∑
i |aij | (18)

Rd×d 3 A, ||A ||∞ = “max abs row sum′′ = maxi

∑
j |aij | (19)

The norm ||A ||2 =
√
ρ(ATA), where the spectral radius ρ(B) is the

largest to magnitude eigenvalue of matrix B.
For a symmetric real matrix ||A ||2 = ρ(A).

In MTH 452-552 we proved stability of FD solution to the
two-point Dirichlet BVP. . .

We have proved that ||A−1
h ||p ≤ C for p = 2,∞.

From this it follows for E = A−1
h τ that

||E ||∆,2 =
√
h ||E ||2 ≤

√
h ||A−1

h ||2 ||τ ||2 =
√
hCO(h2)

√
M = O(h2) (20)

||E ||∆,∞ = ||E ||∞ ≤||A−1
h ||∞ ||τ ||∞ ≤ CO(h2) = O(h2) (21)

14 / 28



Lecture 1 (Recap FD for Dirichlet BVP) 2-3 4-6 7-12 13-15 16-21 22-end

Two-point BVP; Neumann boundary conditions
Consider −u′′ = f, x ∈ (a, b);u(a) = ua, u

′(b) = gb .

To discretize, we modify (12b) in (12)

Interior : 1
h2 (2Uj − Uj−1 − Uj+1) = f(tj), ∀j = 1, . . .M−1 (22a)

Boundary : U0 = ua, (D∗hU)M = gb. (22b)

We have to choose the difference operator (D∗hU)M .

One-sided (D∗hU)M = UM−UM−1

h = gb, which is O(h) accurate

Two-sided (D∗hU)M = UM+1−UM−1

2h = gb, which is O(h2), but
introduces an additional unknown UM+1 and requires an
additional equation (e.g., we can write (22a) for j = M).

One-sided second order approximation (recall from MTH 4/552).

After the choice is made, write the system (22) as AU = F .

When choosing D∗h, note: if one can ensure that the system AU = F has a

symmetric matrix A, (i) proofs of stability in L2 are much easier, and (ii)

iterative linear solvers for sparse systems “like” spd A.
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Variable coefficients

Consider −(ku′)′ = f, x ∈ (a, b), u(a) = ua,−(ku′)(b) = qb .

Do it right

1. It is a BAD idea to apply the product rule to this problem.
2. Instead, we first discretize (DhU)j±1/2 at each point xj±1/2,
calculate k(xj±1/2)(DhU)j±1/2, and apply Dh again.

The analogue of (22a) is now

− 1

h

(
k(xj+1/2)

U j+1 − U j

h
− k(xj−1/2)

U j − U j−1

h

)
= f(xj) (23)

Next we discretize the flux condition −(ku′)(b) = qb with, say,
one-sided approximation.
Finally we set up the system AU = F , and solve.
Ex.: Attempt LTE analysis assuming k(x) is smooth. Also, write the

linear system to be solved
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