HW 1, MTH 482-582_W15/Peszynska

Please complete the following review problems on partial derivatives

(1) Consider the following transformation $(\xi, \eta)=T(x, y)$ with $\xi=$ $x+y, \quad \eta=x-y$,
(a) Find $D T$. Check if $D T$ is singular for any x, y.
(b) For some $u=u(\xi(x, y), \eta(x, y))$, express u_{x} in terms of u_{ξ}, u_{η}.
(c) Sketch $T\left([0,1]^{2}\right)$.
(d) Express $u_{x x}$ in terms of the first and second order partial derivatives of u with respect to ξ, η.
(e) Consider a particular example where

$$
u(\xi, \eta)=\sin (\xi)+\exp (\eta)
$$

Check your answers in (b) and (d).
(f) Work out the details of the inverse transformation T^{-1} and calculate its Jacobian $D T^{-1}$ directly and from the inverse function theorem.
(2) Consider the following transformation $(\xi, \eta)=T(x, y)$ with $\xi=$ $A x+B y, \quad \eta=C x+D y$, where A, B, C, D are real constants. (a-c) Complete (a-c) from Pbm (1).
In (c), you can assume for simplicity that all A, B, C, D are positive.
(3) Consider the following transformation $(\xi, \eta)=T(x, y)$ with $\xi=$ $x^{2}+3 y, \quad \eta=x+2 y^{2}$,
(a-b) Complete ($\mathrm{a}-\mathrm{b}$) from Pbm (1).
(c) Sketch $T\left(\left[0, \frac{1}{4}\right]^{2}\right)$.
(d) Extra: Sketch $T\left([0,1]^{2}\right)$. Interpret in view of (b).
(4) Consider polar coordinates and $x=x(r, \theta), y=y(r, \theta)$ (equivalently, $r=r(x, y), \theta=\operatorname{theta}(x, y)$.

Work out details to show that

$$
u_{x x}+u_{y y}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

I know this calculation can be looked up anywhere. But please do it anyway.

