HW 1, MTH 482-582_W15/Peszynska

Please complete the following review problems on partial derivatives

- (1) Consider the following transformation $(\xi, \eta) = T(x, y)$ with $\xi = x + y$, $\eta = x y$,
 - (a) Find DT. Check if DT is singular for any x, y.
 - (b) For some $u = u(\xi(x, y), \eta(x, y))$, express u_x in terms of u_{ξ}, u_{η} .
 - (c) Sketch $T([0,1]^2)$.
 - (d) Express u_{xx} in terms of the first and second order partial derivatives of u with respect to ξ, η .
 - (e) Consider a particular example where

$$u(\xi,\eta) = \sin(\xi) + \exp(\eta).$$

Check your answers in (b) and (d).

(f) Work out the details of the inverse transformation T^{-1} and calculate its Jacobian DT^{-1} directly and from the inverse function theorem.

(2) Consider the following transformation (ξ, η) = T(x, y) with ξ = Ax + By, η = Cx + Dy, where A, B, C, D are real constants.
(a-c) Complete (a-c) from Pbm (1).
In (c), you can assume for simplicity that all A, B, C, D are

In (c), you can assume for simplicity that an A, B, C, D are positive.

- (3) Consider the following transformation $(\xi, \eta) = T(x, y)$ with $\xi = x^2 + 3y$, $\eta = x + 2y^2$,
 - (a-b) Complete (a-b) from Pbm (1).
 - (c) Sketch $T([0, \frac{1}{4}]^2)$.
 - (d) Extra: Sketch $T([0, 1]^2)$. Interpret in view of (b).
- (4) Consider polar coordinates and $x = x(r, \theta), y = y(r, \theta)$ (equivalently, $r = r(x, y), \theta = theta(x, y)$.

Work out details to show that

$$u_{xx} + u_{yy} = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}.$$

I know this calculation can be looked up *anywhere*. But please do it anyway.