Assignment 3

(Do not turn in, use for practice on wave equation before midterm).

Consider

$$
\begin{gather*}
u_{t t}-c^{2} u_{x x}=0, x \in \mathbb{R}, t \in \mathbb{R} \tag{1}\\
u_{t t}-c^{2} u_{x x}=f(x, t), x \in \mathbb{R}, t \in \mathbb{R} \tag{2}\\
u_{t t}-c^{2} u_{x x}=0, x \in(0, L), t \in \mathbb{R} \tag{3}
\end{gather*}
$$

1. Prove the following property of convolution and give the assumptions under which it holds

$$
\begin{equation*}
\frac{d}{d t}(f * g)=f(0) g(t)+f^{\prime} * g \tag{4}
\end{equation*}
$$

2. Carry out calculations which show that $u(x, t)$ as given in class solves (2) with homogeneous initial conditions. Also, find the solution when initial conditions are inhomogeneous.
3. Compute the solution to (2) when $f(x, t)$ is given as $1, x t, e^{-x}, \cos (x)$.
4. Use the formula from class for solution to (2) to show how that solutions depends on the data $f(x, t)$.
5. Use the formal solution we derived for (3) to show that it can be written in the form $h(x+c t)+h(x-c t)$.
Hint: Use the formula for $\sin (A+B)-\sin (A-B)$.
6. Derive formally the solution to (3) with i) homogeneous Neumman conditions, ii) with mixed homogeneous conditions.
7. Use the solution to (3) with special initial data $u(x, 0)=\sin (x), u_{t}(x, 0)=$ 0 with $L=\pi$ that we derived in class and compute the energy of that solution. Show that it remains constant.
