MTH 621/Peszynska/Fall 2008

Assignment 4

1. Find the best approximation of $f(x)=x^{2}$ in $L^{2}(-1,1)$ in the subspace spanned by $\{1, x\}$. What happens if we choose $L^{2}(0,1)$ instead?
2. Show that the functions $\left\{\sin \left(\left(n+\frac{1}{2}\right) x\right)\right\}$ form an orthogonal set on the interval $(0, \pi)$. How about on $(-\pi, \pi)$? On $(0, \pi / 2)$? Propose a change to make this set orthonormal, if possible. Can this set be used as a basis for all of $L^{2}(-\pi, \pi) ?$ (Hint: consider value of the functions at 0 .)
3. Consider the Fourier series for the function $f(x)=x$ on $(0, \pi)$ extended to $(-\pi, \pi)$ in an i) even, ii) odd way, iii) by translation. What do we know about the way the Fourier series converges to $f(x)$ on $(-\pi, \pi)$? (Answer without computing the coefficients).
Extra: Actually calculate the Fourier series in each case and plot the sum of the first few terms.
