MTH 621/Peszynska/Fall 2008

Assignment 5

1. Use separation of variables to (formally) solve the damped wave equation $u_{t t}+r u_{t}=c^{2} u_{x x}$ on $(-\pi, \pi)$, with homogeneus Dirichlet boundary conditions and with initial conditions same as for the wave equation. Consider $c>0$ and a small damping parameter $r 0<r<2 c$.
Extra: what happens if r is negative or large positive ?
2. Find the eigenvalues, eigenfunctions, and solve the diffusion equation with periodic boundary conditions on $(0, L)$.
3. Solve the advection-diffusion equation $u_{t}-k u_{x x}+v u_{x}=0$ on $x \in \mathbb{R}, t>0$, where $k>0$ and v is a given constant velocity. Hint: change variable to $y=x-v t$. Use initial condition $u(x, 0)=b o x(x)$.
Plot the solutions for $k=1,10^{-2}, 10^{2}$ and $v=1,10^{-2}, 10^{2}$ for a fixed time and discuss dependence of the solution on the Péclet number $\frac{v}{k}$ (ratio of advection to diffusion).
