MTH 621/Peszynska/Fall 2015, Assignment 3

Please show enough of your work to justify the answer but be concise.
Use proper mathematical notation.
Solve 1, 6, 7, 8 or more for extra credit. In particular, solving $2-3-4-5$ will give you excellent practice on Fourier series.

1. [pts] Consider the Hilbert space V and its subspace K as given. Find the best approximation in K of a given v.
i) Let $K=\left\{v(x)=\alpha x^{2} ; \alpha \in \mathbb{R}\right\}$ for $v(x)=x$ and $V=L^{2}(-1,1)$. ii) Let $K=\{v(x)=\alpha \sin (x)+\beta \cos (2 x) ; \alpha, \beta \in \mathbb{R}\} . \quad v(x)=$ $\sin (2 x)-3 \cos (x)$ and $V=L^{2}(-\pi, \pi)$.
The solutions are actually quite simple so spend some time on establishing the proper background for this problem. For example, do we know that K is indeed a subspace of V; what is the orthonormal basis for K and V. Is $v \in V$ etc. ?
2. [pts] Consider $f(x)=x, g(x)=|x|$, and $h(x)=\left\{\begin{array}{ll}1, & x>0 \\ 0, & x \leq 0\end{array}\right.$, each on $(-\pi, \pi)$.
For each of these functions, consider their periodic extensions, and determine what you would expect from the convergence of its Fourier series (without calculating it). Include the considerations of mean-square convergence, and pointwise and uniform convergence of the series combined with the discussion of the (lack of) continuity of the function and its derivatives. Refer to the theory from [GLee, Chapter 3] or from the class handout.
3. [pts] For functions in the previous problem, find their Fourier series and revisit the convergence issues. BE CONCISE. (I do not need to see the details of all the calculations).
Extra: plot the first few partial sums).
4. [pts] Solve 3-2.2b. Use the series that you found to show

$$
\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

5. [pts] Solve 3-3.1
6. [pts] Solve 3-2.3

Important: this function is the so-called Green's function.
7. [$\mathbf{p t s}$] Consider the formal travelling wave solution to the homogeneous wave equation with "sine" initial displacement $u(x, o)=$ $\sin (x)$ and zero initial velocity, with $c=1$, and show that the total energy

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{\substack{\mathbb{R} \\ 1}}\left(\left(u_{t}\right)^{2}+\left(u_{x}\right)^{2}\right) d x \tag{0.1}
\end{equation*}
$$

does not change. (For the energy to be finite, choose the support of the "sine" initial data to be compact, e.g., in $(0, \pi))$.
Note: the first part of the integral gives the kinetic energy, and the second the potential energy.
Challenge/extra: show that the above is true for any compactly supported initial data. (Hint: consider $\frac{d E}{d t}$ and integrate by parts several times). If you solved this part, you do not have to solve the first part again.
8. [pts] Solve 4-2.11 (a-d).

Extra: (e-f). You can use any analytical or computational method of your choice; include the references if any.

