Please show all your work. Use proper mathematical notation.

1. Verify whether the following functionals on $C^{1}([0,1])$ is linear i) $J(y)=$ $\int_{0}^{1} y y^{\prime} d x$, ii) $J(y)=\int_{0}^{1} \int_{0}^{1} K(x, t) y(x) y(t) d x d t$, iii) $J(y)=\int_{0}^{1} y \sin (x) d x$, iv) $J(y)=y^{\prime}(1 / 2)+y(0)$. v) $J(y)=f(y(0))$, where f is a given function.
2. Derive Euler-Lagrange equation for the functional $J(y)=\int_{0}^{1}\left(\left(y^{\prime}\right)^{2}-\right.$ $f y) d x$, where f is a given function.
3. Derive the PDE (finish class example) satisfied by the minimal surface problem (soap bubble suspended from a wire of a given shape). Determine the type of this second-order PDE.
4. If possible, find the stationary point (extremal) if the functional $J(y)=$ $\int_{0}^{1}\left(y^{2}+x^{2} y^{\prime}\right) d x, y(0)=0, y(1)=\alpha$. (Your answer will depend on the value of α).
