Please show all your work. Use proper mathematical notation.

1. Find distributional derivatives of order $1,2, \ldots$ of $u(x)=\left\{\begin{array}{ll}x^{2}, & x \geq 0 \\ -x^{2}, & x<0\end{array}\right.$. Identify which of these derivatives (if any) are classical, weak.
2. Consider $L u:=x u^{\prime}$ where u^{\prime} denotes either classical (if it exists), or distributional derivative. If possible, i) find the classical solution $u \in$ $C^{1}(\mathbb{R})$ to $L u=0$, ii) find the formal adjoint of L, iii) show that $u=$ $c H(x)+c_{1}$ is a weak solution to $L u=0$.
3. (EXTRA) Show that, in the sense of distributions, $x \delta^{\prime}=-\delta$.
4. Let $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$. Show that i) A is spd. ii) Show that $(x, y)_{A}:=$ $y^{T} A x$ is an inner product. iii) Given a vector $f \in \mathbb{R}^{2}$, find the vector that minimizes the functional (also called quadratic form) $J(u)=\frac{1}{2} u^{T} A u-$ $u^{T} f, u \in \mathbb{R}^{2}$. (Hint: find $J(u+\epsilon v)$ and proceed similarly as we did in order to find E-L equations, except here this time you minimize over \mathbb{R}^{2} and not over some space of functions.
5. Verify that the bump function is a test function.
