Please show enough work to justify your answer.
Use proper mathematical notation.
(1) Verify that $u(x, t)=-2 x t-x^{2}$ solves the homogeneous diffusion equation with variable coefficients $u_{t}-x u_{x x}=0$. Find its maximum on $[-2,2] \times[0,1]$ and verify if the maximum principle applies (it does not). Where does the proof of maximum principle break down for this equation?
(2) Prove the comparison principle for the solutions of the diffusion equation $u_{t}-u_{x x}=0$, with some initial and boundary conditions given as in text.
Assume that $u, v$ are both solutions, and that $u \leq v$ on the part

$$
[0, L] \times 0 \cup 0 \times[0, T) \cup L \times[0, T)
$$

of the boundary of the region $Q_{T}=(0, L) \times(0, T)$. Show that $u \leq v$ on $Q_{T}$.
(3) Solve the "steady-part" of 5.2 .7 (without using the explicit formula derived in part A).

