MTH 622/Peszynska/Winter 2016, Assignment 4. Part B

Please show enough work to justify your answer.
Use proper mathematical notation.
(1) Find the Euler-Lagrange equations for the functional

$$
J\left(x, u, u^{\prime}\right)=\int_{0}^{1}\left(\left(u^{\prime}\right)^{2} \sin (u)-x^{2} u\right) d x
$$

on some $V \subset C^{1}(0,1)$. (Do not attempt to solve them).
(2) Find the best Poincaré-Friedrichs constant for $\Omega=(0,1)$ as outlined in class, by minimizing the functional $J(u)=\int_{\Omega}\left(u^{\prime}\right)^{2} d x$ subject to the constraint $\int u^{2} d x=1$.
(3) Find the distributional derivatives $\partial^{k} f$ for the regular distribution on $\Omega=(-1,1)$ identified with the function $f(x)=x^{2}, x \geq$ 0 , and $f(x)=x^{3}, x<0$. Try $k=1,2, \ldots$ until you get the first singular distribution.
(4) Let $a \in R$.
(i) For what a can you show that $(u, v)=\int_{0}^{1} a u^{\prime} v^{\prime}+\int_{-1}^{0} u^{\prime} v^{\prime}$ is an inner product on $H_{0}^{1}(-1,1)$? (Show it).
(ii) Find the Riesz representer $w_{a}(x) \in H_{0}^{1}(-1,1)$ with respect to this inner product for $J(v)=\int_{-1}^{1} v(x) d x$.

Extra: (iii) For what a is $w_{a} \in H_{0}^{1}(-1,1) \cap H^{2}(-1,1)$?
(5) Consider the functional $J(u)=\int_{0}^{1}\left[\left(u^{\prime}\right)^{2}-u\right] d x$ on $H_{*}^{1}(0,1)=$ $\left\{v \in H^{1}(0,1): v(0)=0\right\}$. (i) Find the variational formulation for its minimizer, from the definition of the first variation (consider $J(u+t v)$, and so on). (ii) Find this minimizer.
(6) Extra: For what α is $u(r, \theta)=r^{\alpha}$ in $H^{1}\left(B_{0}(1)\right)$ in $d=2$?
(7) For what a, with $\Omega=B_{0}(a)$, is $u(r, \theta)=\log (r) \in W^{1,1}(\Omega) \in \mathbb{R}^{d}$ when $d=2$?

Extra: What about when $d=3$? Is $u \in W^{1,2}(\Omega)$?
(8) Show that $u(r, \theta)=\log \log \frac{2}{r} \in H^{1}\left(B_{0}(1)\right)$.

