MTH 655, Winter 2017, Assignment 3, theoretical part
In this HW, in the theoretical part, you practice working with bilinear form and error estimates.

Solve 1. If 1 is too easy, solve 2, or both for extra credit. Problem 3 is for extra credit only.

1. Bilinear form and variational form (A) Consider the form

$$
\begin{equation*}
a(u, v)=\int_{-1}^{1} 3 u^{\prime} v^{\prime}+\int_{-1}^{1}(2 x+A) u v \tag{1}
\end{equation*}
$$

defined on $V=H^{1}(-1,1)$. Assuming $A=10$ show that this form is bilinear, symmetric, coercive (V-coercive), and continuous. (For the latter two conditions determine the constants of continuity and coercivity). For what values of A do these properties still hold?
(B) Given $f(x)=x^{2}$, determine the boundary value problem that corresponds to: find $u \in V$

$$
\begin{equation*}
a(u, v)=(f, v), \quad \forall v \in V \tag{2}
\end{equation*}
$$

2. L^{2} error estimate for piecewise polynomials of degree $k=5$

In class we have proved that $\left\|u-u_{h}\right\|_{L^{2}}=O\left(h^{2}\right)$ when using piecewise linears. Carry out the proof when $V_{h}=\left\{v \in V,\left.v\right|_{E} \in \mathbf{P}_{5} ; \forall E \in T_{h}\right\}$ to determine the order k in $\left\|u-u_{h}\right\|_{L^{2}}=O\left(h^{k}\right)$. What is k ?

3. Poincaré-Friedrichs constant (extra credit)

Consider $\Omega=(0,1)$. One can prove that the best (smallest) constant $C_{P F}$ in

$$
\begin{equation*}
\|v\|_{L^{2}} \leq C_{P F}\|v\|_{H_{0}^{1}}, \quad \forall v \in H_{0}^{1} \tag{3}
\end{equation*}
$$

can be found by considering the eigenvalue problem

$$
\begin{array}{r}
-u^{\prime \prime}=\lambda u, \quad x \in(0,1) \\
u(0)=u(1)=0 \tag{4b}
\end{array}
$$

Demonstrate the connection between (which?) eigenvalue λ in (4) and $C_{P F}$. Hint: start with the variational formulation of (4).

Show how you would find $C_{P F}$ and λ numerically. (You can use fem1d_2017.m).

