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We have seen that many interesting spaces of functions have natural structures of Banach spaces: Co(K)
for K compact, as well as Ck[a, b], and generalizations of these.

Banach spaces are less special than Hilbert spaces, but still sufficiently simple that their fundamental
properties can be explained readily. Several standard results which are true in greater generality have
simpler and more transparent proofs in this setting.

The Banach-Steinhaus (uniform boundedness) theorem and the open mapping theorem are significantly more
substantial than the first results here, since they invoke the Baire category theorem. The Hahn-Banach
theorem is non-trivial, but does not use completeness.

Finally, as made clear in work of Gelfand, of Grothendieck, and of many others, many subtler sorts of
topological vectorspaces are expressible as limits of Banach spaces, making clear that Banach spaces play
an even more central role than would be apparent from many conventional elementary functional analysis
texts. We will pursue this later.

• Basic Definitions
• Spaces of continuous linear maps
• Dual spaces of normed spaces
• Banach-Steinhaus (uniform boundedness) Theorem
• Open mapping theorem
• Hahn-Banach theorem

1. Basic Definitions

A complex vectorspace[
�
] V with a real-valued function

| | : V −→ R

so that
|x + y| ≤ |x| + |y| (triangle inequality)

|αx| = |α||x| (α complex, x ∈ V )
|x| = 0 −→ x = 0 (positivity)

is a normed complex vectorspace, or simply normed space. Because of the triangle inequality, the
function

d(x, y) = |x − y| = |y − x|

is a metric. When the space V is complete with respect to this metric, V is a Banach space.

Because of the Cauchy-Schwarz-Bunyakowsky inequality, pre-Hilbert spaces are normed spaces, and Hilbert
spaces are Banach spaces. But there are certainly many Banach spaces which are not Hilbert spaces.

2. Normed spaces of linear maps

[
�
] There are occasions where one wants the scalars to be R rather than C. In fact, for many purposes, the scalars need

not be the real or complex numbers, need not be locally compact, and need not even be commutative. Mostly these

other possibilities will not concern us.
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There is a natural norm on the collection of all continuous (k-)linear maps T : X −→ Y from one normed
space X to another one Y (over common scalars k).

Let Homo(X, Y ) denote[ � ] the collection of all continuous k-linear maps from the normed k-vectorspace X
to the normed k-vectorspace Y . We use the same notation | | for the norms on both X and Y , since context
should make clear which is meant.

For a k-linear (not necessarily continuous) map T : X −→ Y from one normed space to another the uniform
norm is

|T | = |T |uniform = sup
|x|≤1

|Tx|

where we allow the value +∞. Such a linear map T is called bounded if |T | < +∞. There are several fairly
obvious variants of the expression for the uniform norm:

|T | = sup
|x|≤1

|Tx| = sup
|x|<1

|Tx| = sup
|x|6=0

|Tx|

|x|

Proposition: For a k-linear map T : X −→ Y from one normed space to another, the following conditions
are equivalent:
• T is continuous.
• T is continuous at one point.
• T is bounded.

Proof: First, let’s show that continuity at a point xo implies continuity everywhere. Take another point x1.
Given ε > 0, take δ > 0 so that |x − xo| < δ implies |Tx − Txo| < ε. Then for |x′ − x1| < δ

|(x′ + xo − x1) − xo| < δ

Invoking the linearity of T ,
|Tx′ − Tx1| = |T (x′ + xo − x1) − Txo| < ε

which is the desired continuity at x1.

Now suppose that T is continuous at 0. For ε > 0 there is δ > 0 so that |x| < δ implies |Tx| < ε. For given
x 6= 0,

|
δ

2|x|
x| < δ

and so

|T
δ

2|x|
x| < ε

Multiplying out and using the linearity,

|Tx| <
2ε

δ
|x|

giving the boundedness.

Finally, prove that boundedness implies continuity at 0. Suppose there is C such that |Tx| < C|x| for all x.
Then, given ε > 0, for |x| < ε/C

|Tx| < C|x| < C ·
ε

C
= ε

which is continuity at 0. ///

[ � ] Another traditional notation for the collection of continuous linear maps from X to Y is B(X, Y ), where B stands

for bounded.
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The space Homo(X, Y ) of continuous linear maps from one normed space X to another normed space Y has
a natural structure of k-vectorspace by

(αT )(x) = α · (Tx)

(S + T )x = Sx + Tx

for α ∈ k, S, T ∈ Homo(X, Y ), and x ∈ X .

Proposition: With the uniform norm, the space Homo(X, Y ) of continuous linear operators from a normed
space X to a Banach space Y is complete, even if X itself is not.

Proof: Let {Ti} be a Cauchy sequence of continuous linear maps T : X −→ Y . Try defining the limit
operator T simply by

Tx = lim
i

Txi

First, we should check that this limit exists. Given ε > 0, take io large enough so that for i, j > io we have
|Ti − Tj | < ε. Then, by the definition of the norm on operators,

|Tix − Tjx| < |x|ε

Thus, the sequence of values Tix is Cauchy in Y , so has a limit in Y , call it Tx.

We need to prove that x −→ Tx is continuous and linear. The arguments required are inevitable. Given
c ∈ C and x ∈ X , for given ε > 0 choose index i so that for j > i both |Tx− Tjx| < ε and |Tcx− Tjcx| < ε.
Then

|Tcx − cTx| ≤ |Tcx − Tjcx| + |cTjx − cTx| = |Tcx − Tjcx| + |c| · |Tjx − Tx| < (1 + |c|)ε

This is true for every ε, so Tcx = cTx. Similarly, given x, x′ ∈ X , for ε > 0 choose an index i so that for
j > i |Tx − Tjx| < ε and |Ty − Tjy| < ε and |T (x + y) − Tj(x + y)| < ε. Then

|T (x + y) − Tx − Ty| ≤ |T (x + y) − Tj(x + y)| + |Tjx − Tx| + |Tjy − Ty| < 3ε

Again, this holds for every ε, so it must be that T (x + y) = Tx + Ty.

For continuity: it suffices to show that T is bounded. Choose an index io so that for i, j ≥ io

|Ti − Tj | ≤ 1

This is possible since the sequence of operators is Cauchy. Then for such i, j

|Ti − Tjx| ≤ |x|

for all x. Thus, for i ≥ io
|Tix| ≤ |(Ti − Tio

)x| + |Tio
x| ≤ |x|(1 + |Tio

|)

Then, taking a limsup,
lim sup

i
|Tix| ≤ |x|(1 + |Tio

|)

This implies that T is bounded, and so is continuous. ///

3. Functionals, duals of normed spaces

In this section we consider an important special case of continuous linear maps between normed spaces,
namely continuous linear maps from Banach spaces to the scalars. All the assertions here are special cases
of those for continuous linear maps to more general Banach spaces, but do deserve special attention.
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Let X be a normed vectorspace with norm | |. A continuous k-linear map

λ : X −→ k

is often called a (continuous linear) functional on X . Let

X∗ = Hom(X, k)

denote the collection of all such functionals.

For any k-linear map λ : X −→ k of a normed k-vectorspace to k, define the norm |λ| by

|λ| = sup
|x|≤1

|λx|

where |λx| is the absolute value of the value λx ∈ k. We explicitly allow the value +∞. Such a linear map
λ is called bounded if |λ| < +∞.

Proposition: For a k-linear map λ : X −→ k from a normed space X to k, the following conditions are
equivalent:
• The map λ is continuous.
• The map λ is continuous at one point.
• The map λ is bounded.

The dual space
X∗ = Homo(X,C)

of X is the collection of continuous linear functionals on X . This dual space has a natural structure of
k-vectorspace by

(αλ)(x) = α · (λx)

(λ + µ)x = λx + µx

for α ∈ k, λ, µ ∈ X∗, and x ∈ X . It is easy to check that the norm

|λ| = sup
|x|≤1

|λx|

really is a norm on X∗, in that it meets the conditions

• Positivity: |λ| ≥ 0 with equality only if λ = 0.
• Homogeneity: |αλ| = |α| · |λ| for α ∈ k and λ ∈ X∗. As a special case of the discussion of the uniform
norm on linear maps, we have

Corollary: The dual space X∗ of a normed space X , with the natural norm, is a Banach space. That is,
with respect to the natural norm on continuous functionals, it is complete. ///

4. Banach-Steinhaus (uniform boundedness) theorem

Now we come to some non-trivial results, non-trivial in the sense that they use the Baire category theorem.

Theorem: (Banach-Steinhaus/uniform boundedness) For each α in an index set A, let Tα : X −→ Y be a
continuous linear map from a Banach space X to a normed space Y . Then either there is a uniform bound
M < ∞ so that |Tα| ≤ M for all α ∈ A, or there is x ∈ X such that

sup
α∈A

|Tαx| = +∞
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In fact, there is a dense Gδ of such x.

Proof: Let p(x) = supα |Tαx|. Being the sup of continuous functions, p is lower semi-continuous: for each
integer n, the set Un = {x : p(x) > n} is open.

On one hand, if each of these is dense in X , then by Baire category the intersection is dense, and by definition
is a dense (hence, non-empty) Gδ . On that set p is +∞.

If some one of the Un should fail to be dense, then by definition there would be a ball B of radius r > 0
about some point xo which failed to meet Un. Then for |x − xo| < r and for all α

|Tα(x − xo)| ≤ |Tαx| + |Tαxo| ≤ 2n

Thus, as x − xo varies over the open ball of radius r the vector x′ = (x − xo)/r varies over the open ball of
radius 1, and we have

|Tαx′| = |Tα
(x − xo)

r
| ≤ 2n/r

From this it follows that |Tα| ≤ 2n/r, which is the uniform boundedness. ///

5. Open mapping theorem

The open mapping theorem is also non-trivial, insofar as it invokes the Baire category theorem.

Theorem: (open mapping) Let T : X −→ Y be a continuous linear surjective map of Banach spaces.
Then there is δ > 0 such that for all y ∈ Y with |y| < δ there is x ∈ X with |x| ≤ 1 such that Tx = y. In
particular, T is an open map.

Corollary: If T : X −→ Y is a bijective continuous linear map of Banach spaces, then T is a
homeomorphism (so is an isomorphism). ///

Proof: Note that the in the corollary the non-trivial point is that T is open, which is the point of the
theorem. The linearity of the inverse is easy.

For every y ∈ Y there is x ∈ X so that Tx = y. For some integer n we have n > |x|, so Y is the union of
the sets TB(n), where

B(n) = {x ∈ X : |x| < n}

are the usual open balls. By Baire category, the closure of some one of the sets TB(n) contains a non-empty
open ball

V = {y ∈ Y : |y − yo| < r}

for some r > 0 and yo ∈ Y . Since we are in a metric space, the conclusion is that every point of V occurs as
the limit of a Cauchy sequence consisting of elements from TB(n).

Certainly
{y ∈ Y : |y| < r} ⊂ {y1 − y2 : y1, y2 ∈ V }

Thus, every point in the ball B′
r of radius r centered at 0 in Y is the sum of two limits of Cauchy sequences

from TB(n). Thus, surely every point in B′
r is the limit of a single Cauchy sequence from the image TB(2n)

of the open ball B(2n) of twice the radius. That is, the closure of TB(2n) contains the ball B ′
r.

Using the linearity of T , the closure of TB(ρ) contains the ball B ′
rρ/2n in Y .

Then, given |y| < 1, choose x1 ∈ B(2n/r) so that |y − Tx1| < ε. Then choose x2 ∈ B(ε · 2n
r ) so that

|(y − Tx1) − Tx2| < ε/2
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Choose x3 ∈ B( ε
2 · 2n

r ) so that

|(y − Tx1 − Tx2) − Tx3| < ε/22

Choose x4 ∈ B( ε
22 · 2n

r ) so that

|(y − Tx1 − Tx2 − Tx3) − Tx4| < ε/23

and so on. Then the sequence
x1, x1 + x2, x1 + x2 + x3, . . .

is Cauchy in X . Since X is complete, the limit x of this sequence exists in X , and Tx = y. We find that

x ∈ B(2n/r) + B(ε
2n

r
) + B(

ε

2
·
2n

r
) + B(

ε

22
·
2n

r
) + . . . ⊂ B((1 + ε)

2n

r
)

This holds for every ε > 0. That is, for every ε > 0

TB((1 + ε)
2n

r
) ⊃ {y ∈ Y : |y| < 1}

Using linearity, for every ε > 0,

TB(2n/r) ⊃ {y ∈ Y : |y| < (1 + ε)−1}

Now
⋃

ε

> 0{y ∈ Y : |y| < (1 + ε)−1} = {y ∈ Y : |y| < 1}

Thus, we have proven that
TB(2n/r) ⊃ {y ∈ Y : |y| < 1}

or, by linearity, that
TB(1){y ∈ Y : |y| < r/2n}

as desired. ///

6. Hahn-Banach Theorem

For this result, completeness is not used at all. Rather, the salient issue is convexity, and we definitely
need the scalars to be either R or C. Indeed, the Hahn-Banach theorem seems to be a result about real
vectorspaces. Note that a C-vectorspace may immediately be considered as a R-vectorspace simply by
forgetting some of the structure.

For Y a vector subspace of X , and for S : Y −→ Z a linear map to another vectorspace Z, say that a linear
map T : X −→ Z is an extension of S to X if the restriction T |Y of T to Y is S.

Theorem: (Hahn-Banach) Let X be a normed vectorspace with scalars R or C. Let Y be a subspace. Let
λ be a bounded linear functional on Y . Then there is an extension Λ of λ to X such that

|Λ| = |λ|

Corollary: Given x 6= y both in a normed space X , neither a scalar multiple of the other, there is a
continuous linear functional λ on X so that λx = 1 while λy = 0. ///

Corollary: Let Y be a closed subspace of a normed space X , and take xo 6∈ Y . Then there is a continuous
linear functional λ on X which is 0 on Y , has |λ| = 1, and λ(xo) = |xo|. ///
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Proof: We first treat the case that the scalars are R, and then reduce the complex case to this.

The first and most critical part is to see how to extend a linear functional by just one dimension. That is,
for given xo 6∈ Y make an extension λ′ of λ to Y ′ = Y + Rxo. Every vector in Y ′ has a unique expression
as y + cxo with c ∈ R, so we can define functionals by

µ(y + cxo) = λy + c`

for any ` ∈ R. The issue is to choose ` so that |µ| = |λ|.

Certainly λ = 0 is extendable by Λ = 0, so we only consider the case that |λ| 6= 0. In that case we can divide
by |λ| so as to suppose without loss of generality that |λ| = 1.

The condition |µ| = |λ| is
|λy + c`| ≤ |y + cxo|

for every ` ∈ R and for every y ∈ Y . We have simplified to the situation that we know this does hold for
c = 0. So for c 6= 0, divide through by |c| and replace y ∈ Y by cy, so that the condition becomes

|λy + `| ≤ |y + xo|

Replacing y by −y, the condition is that

|` − λy| ≤ |y − xo|

for every y ∈ Y .

View the collection of all these conditions as a family of conditions upon `. For given y ∈ Y , the condition
is that

λy − |y − xo| ≤ ` ≤ λy + |y − xo|

For these conditions to have a common solution `, it is exactly necessary that every lower bound be less than
every upper bound. To see that this is so, start from

λy1 − λy2 = λ(y1 − y2) ≤ |λ(y1 − y2)| ≤ |y1 − y2| ≤ |y1 − xo| + |y2 − xo|

by the triangle inequality. Then, subtracting |y1−xo| from both sides and adding λy2 to both sides, we have

λy1 − |y1 − xo| ≤ λy2 + |y2 − xo|

as desired. That is, we have proven the existence of at least one extension from Y to Y ′ = Y + Rxo (and
with the same norm).

Now invoke an equivalent of the Axiom of Choice to prove that we can extend to the whole space (while
preserving the norm). Consider the set of pairs (Z, ζ) where Z is a subspace containing Y and ζ is a
continuous linear functional on Z extending λ and with |ζ| ≤ 1. Order these by writing

(Z, ζ) ≤ (Z ′, ζ ′)

when Z ⊂ Z ′ and ζ ′ extends ζ. For a totally ordered collection (Zα, ζα) of such,

Z ′ =
⋃

α

Zα

is a subspace of X . In general, of course, the union of a family of subspaces would not be a subspace, but
these are nested.
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Then we obtain a continuous linear functional ζ ′ on this union Z ′, extending λ and with |ζ ′| ≤ 1, as follows.
The idea is that any finite batch of elements already occur inside some Zα. Given z ∈ Z ′, let α be any index
large enough so that z ∈ Zα. Then put

ζ ′(z) = ζα(z)

Since the family is totally ordered, the choice of α does not matter so long as it is sufficiently large. Certainly
for c ∈ R we have

ζ ′(cz) = ζα(cz) = cζα(z) = cζ ′(z)

And, given z1 and z2 choose α large enough so that both z1 and z2 are in Zα. Then

ζ ′(z1 + z2) = ζα(z1 + z2) = ζα(z1) + ζα(z2) = ζ ′(z1) + ζ ′(z2)

proving linearity.

Thus, there is a maximal pair (Z ′, ζ ′). Then the earlier argument shows that Z ′ must be all of X , since
otherwise we could construct a further extension, contradicting the maximality. This completes the proof for
the case that the scalars are the real numbers.

Now reduce the complex case to the real case. First, there is a trick: let λo be a merely real-linear real-valued
functional, and let

λx = λo(x) − iλ(ix)

Then λ is complex-linear, and has the same norm as λo. (We postpone the proof of this little fact until the
end). In particular, when

λo(x) = <λ(x) =
λx + λx)

2
is the real part of λ then one can see that we recover λ itself by this formula.

Then, given λ on a complex subspace, we take its real part λo, a real-linear functional. Extend λo to a
real-linear functional Λo with the same norm. Then let

Λx = Λo(x) − iΛ(ix)

This is the desired extension, proving the theorem in the complex case by reducing it to the real case.

Last, consider the construction
λx = λo(x) − iλ(ix)

Since λo(x + y) = λox + λoy it follows that λ also has this additivity property. Now let a, b be real, and
consider λ((a + bi)x). We have

λ((a + bi)x) = λo((a + bi)x) − iλo(i(a + bi)x) = λo(ax) + λo(ibx) − iλo(iax) − iλo(−bx)

= aλox + bλo(ix) − iaλo(ix) + ibλox = (a + bi)λox − i(a + bi)λo(ix) = (a + bi)λ(x)

This gives the linearity.

Regarding the norm: since λo is real-valued, always

|λo(x)| ≤
√

λo(x)2 + λo(ix)2 = |λx|

On the other hand, given x there is a complex number µ of absolute value 1 so that µλ(x) = |λx|. And note
that

λo(x) = λ(x) + λ(x)2

Then
|λ(x)| = µλ(x) = λ(µx) = λo(µx) − iλo(iµx)

Since the left-hand side is real, and since λo is real-valued, it must be that λo(µx) = 0. Thus,

|λ(x)| = λo(µx)

Since |µx| = |x|, we have equality of norms of the functionals λo and λ. This completes the justification of
the little trick used to reduce the complex case to the real case. ///

.
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